People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jaroszewicz, Jakub
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023In vitro and in vivo degradation behavior of Mg-0.45Zn-0.45Ca (ZX00) screws for orthopedic applicationscitations
- 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ compositescitations
- 2023In-depth analysis of the influence of bio-silica filler (Didymosphenia geminata frustules) on the properties of Mg matrix compositescitations
- 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sinteringcitations
- 2022Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusioncitations
- 2022Novel optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive characterization of heritage glass-metal objectscitations
- 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites
- 2021Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glasscitations
- 2020Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputteringcitations
- 2020Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Meltingcitations
- 2020Functionalization of 3D Chitinous Skeletal Scaffolds of Sponge Origin Using Silver Nanoparticles and Their Antibacterial Propertiescitations
- 2019Microstructure and corrosion resistance of warm sprayed titanium coatings with polymer sealing for corrosion protection of AZ91E magnesium alloycitations
- 2019Corrosion Resistance of Aluminum Coatings Deposited by Warm Spraying on AZ91E Magnesium Alloycitations
- 20193D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing headcitations
- 2019Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defectscitations
- 2018Micro and nanoscale characterization of poly(DL-lactic-co-glycolic acid) films subjected to the L929 cells and the cyclic mechanical loadcitations
- 2016In vitro degradation of ZM21 magnesium alloy in simulated body fluidscitations
- 2016Characterization of three-dimensional printed composite scaffolds prepared with different fabrication methodscitations
- 2015Influence of the Al (Co, Ni) layer on the corrosion resistance of a cobalt based alloy (Mar-M-509®)citations
- 2013Investigation of degradation mechanism of palladium-nickel wires during oxidation of ammoniacitations
- 2006Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Methodcitations
- 2006Nanocrystalline Cu-Al2O3 Composites Sintered by the Pulse Plasma Techniquecitations
- 2006NiAl–Al2O3 composites produced by pulse plasma sintering with the participation of the SHS reactioncitations
Places of action
Organizations | Location | People |
---|
article
In-depth analysis of the influence of bio-silica filler (Didymosphenia geminata frustules) on the properties of Mg matrix composites
Abstract
A novel metal matrix composites (MMC) with Mg matrix reinforced with natural filler in the form of Didymosphenia geminata frustules (algae with distinctive siliceous shells) are presented in this work. Pulse plasma sintering (PPS) was used to manufacture Mg-based composites with 1, 5 and 10 vol.% ceramic filler. As a reference, pure Mg was sintered. The results show that the addition of 1 vol.% Didymosphenia geminata frustules to the Mg matrix increases its corrosion resistance by supporting passivation reactions, and do not affect the morphology of L929 fibroblasts. Addition of 5 vol.% the filler does not cause cytotoxic effects, but it supports microgalvanic reactions leading to the greater corrosion rate. Higher content than 5 vol.% the filler causes significant microgalvanic corrosion, as well as increases cytotoxicity due to the greater micro-galvanic effect of the composites containing 10 and 15 vol.% diatoms. The results of contact angle measurements show the hydrophilic character of the investigated materials, with slightly increase in numerical values with addition of amount of ceramic reinforcement. The addition of Didymosphenia geminata frustules causes changes in a thermo-elastic properties such as mean apparent value of coefficient of thermal expansion (CTE) and thermal conductivity (λ). The addition of siliceous reinforcement resulted in a linear decrease of CTE and reduction in thermal conductivity over the entire temperature range. With the increasing addition of Didymosphenia geminata frustules, an increase in strength with a decrease in compressive strain is observed. In all composites an increase in microhardness was attained.The results clearly indicate that filler in the form of Didymosphenia geminata frustules may significantly change the most important properties of pure Mg, indicating its wide potential in the application of Mg-based composites with a special focus on biomedical use.