People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dong, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutescitations
- 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutescitations
- 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffoldscitations
- 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffoldscitations
- 2022Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffoldscitations
- 2021Flash sintering of zircon: rapid consolidation of an ultrahigh bandgap ceramiccitations
- 2021Revealing the Dynamic Transformation of Austenite to Bainite during Uniaxial Warm Compression through In-Situ Synchrotron X-ray Diffractioncitations
- 2020Study of Microstructural Development of Bainitic Steel using Eddy Current and Synchrotron XRD in-situ Measurement Techniques during Thermomechanical Treatmentcitations
- 2020Flash cold sintering: Combining water and electricitycitations
- 2018Analysis of early damage in a woven carbon fiber reinforced composite by means of Coda Wave Interferometry (CWI) and terahertz imaging.
- 2017In-situ-Untersuchung von Randschichten während des Gasnitrierens mittels Röntgendiffraktometrie und photothermischer Radiometrie
- 2010Gasnitrocarburieren von Stählen zur Erzeugung dicker und porenarmer Verbindungsschichten für die Mikrozerspanung mit Diamantwerkzeugencitations
Places of action
Organizations | Location | People |
---|
article
Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds
Abstract
<p>Porous biodegradable Mg and its alloys are considered to have a great potential to serve as ideal bone substitutes. The recent progress in additive manufacturing (AM) has prompted its application to fabricate Mg scaffolds with geometrically ordered porous structures. Extrusion-based AM, followed by debinding and sintering, has been recently demonstrated as a powerful approach to fabricating such Mg scaffolds, which can avoid some crucial problems encountered when applying powder bed fusion AM techniques. However, such pure Mg scaffolds exhibit a too high rate of in vitro biodegradation. In the present research, alloying through a pre-alloyed Mg-Zn powder was ultilized to enhance the corrosion resistance and mechanical properties of AM geometrically ordered Mg-Zn scaffolds simultaneously. The in vitro biodegradation behavior, mechanical properties, and electrochemical response of the fabricated Mg-Zn scaffolds were evaluated. Moreover, the response of preosteoblasts to these scaffolds was systematically evaluated and compared with their response to pure Mg scaffolds. The Mg-Zn scaffolds with a porosity of 50.3% and strut density of 93.1% were composed of the Mg matrix and MgZn<sub>2</sub> second phase particles. The in vitro biodegradation rate of the Mg-Zn scaffolds decreased by 81% at day 1, as compared to pure Mg scaffolds. Over 28 days of static immersion in modified simulated body fluid, the corrosion rate of the Mg-Zn scaffolds decreased from 2.3 ± 0.9 mm/y to 0.7 ± 0.1 mm/y. The yield strength and Young's modulus of the Mg-Zn scaffolds were about 3 times as high as those of pure Mg scaffolds and remained within the range of those of trabecular bone throughout the biodegradation tests. Indirect culture of MC3T3-E1 preosteoblasts in Mg-Zn extracts indicated favorable cytocompatibility. In direct cell culture, some cells could spread and form filopodia on the surface of the Mg-Zn scaffolds. Overall, this study demonstrates the great potential of the extrusion-based AM Mg-Zn scaffolds to be further developed as biodegradable bone-substituting biomaterials.</p>