People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhou, Jie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Biodegradation-affected fatigue behavior of extrusion-based additively manufactured porous iron–manganese scaffoldscitations
- 2023Biomechanical evaluation of additively manufactured patient-specific mandibular cage implants designed with a semi-automated workflowcitations
- 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutescitations
- 2023Quality of AM implants in biomedical applicationcitations
- 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffoldscitations
- 2022Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regenerationcitations
- 2022Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous ironcitations
- 2022Additive Manufacturing of Biomaterialscitations
- 2021Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffoldscitations
- 2021Additively Manufactured Biodegradable Porous Zinc Implants for Orthopeadic Applications
- 2021Extrusion-based 3D printed biodegradable porous ironcitations
- 2021Biocompatibility and Absorption Behavior in Vitro of Direct Printed Porous Iron Porous Implants
- 2021Lattice structures made by laser powder bed fusioncitations
- 2020Additively manufactured biodegradable porous zinccitations
- 2020Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitutioncitations
- 2019Additively manufactured functionally graded biodegradable porous ironcitations
- 2019Modeling high temperature deformation characteristics of AA7020 aluminum alloy using substructure-based constitutive equations and mesh-free approximation methodcitations
- 2019Biodegradation-affected fatigue behavior of additively manufactured porous magnesiumcitations
- 2018Additively manufactured biodegradable porous ironcitations
- 2018A comprehensive investigation of the strengthening effects of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloycitations
- 2018Biodegradation and mechanical behavior of an advanced bioceramic-containing Mg matrix composite synthesized through in-situ solid-state oxidationcitations
- 2017Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applicationscitations
- 2017Improvement of mechanical properties of AA6063 aluminum alloy after equal channel angular pressing by applying a two-stage solution treatmentcitations
- 2017Additively manufactured biodegradable porous magnesiumcitations
- 2017Fabrication of novel magnesium-matrix composites and their mechanical properties prior to and during in vitro degradationcitations
- 2016Simultaneous improvements of the strength and ductility of fine-grained AA6063 alloy with increasing number of ECAP passescitations
- 2016An investigation on the properties of injection-molded pure iron potentially for biodegradable stent applicationcitations
- 2015Analysis of the densification behaviour of titanium/carbamide powder mixtures in the preparation of biomedical titanium scaffolds.
- 2015In vitro degradation of magnesium metal matrix composites containing bredigite
- 2015Evolution of macro- and micro-pores in the porous structures of biomedical titanium scaffolds during isothermal sintering
- 2010Preliminary investigation on creep-fatigue regime in extrusion dies
Places of action
Organizations | Location | People |
---|
article
Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds
Abstract
<p>Porous biodegradable Mg and its alloys are considered to have a great potential to serve as ideal bone substitutes. The recent progress in additive manufacturing (AM) has prompted its application to fabricate Mg scaffolds with geometrically ordered porous structures. Extrusion-based AM, followed by debinding and sintering, has been recently demonstrated as a powerful approach to fabricating such Mg scaffolds, which can avoid some crucial problems encountered when applying powder bed fusion AM techniques. However, such pure Mg scaffolds exhibit a too high rate of in vitro biodegradation. In the present research, alloying through a pre-alloyed Mg-Zn powder was ultilized to enhance the corrosion resistance and mechanical properties of AM geometrically ordered Mg-Zn scaffolds simultaneously. The in vitro biodegradation behavior, mechanical properties, and electrochemical response of the fabricated Mg-Zn scaffolds were evaluated. Moreover, the response of preosteoblasts to these scaffolds was systematically evaluated and compared with their response to pure Mg scaffolds. The Mg-Zn scaffolds with a porosity of 50.3% and strut density of 93.1% were composed of the Mg matrix and MgZn<sub>2</sub> second phase particles. The in vitro biodegradation rate of the Mg-Zn scaffolds decreased by 81% at day 1, as compared to pure Mg scaffolds. Over 28 days of static immersion in modified simulated body fluid, the corrosion rate of the Mg-Zn scaffolds decreased from 2.3 ± 0.9 mm/y to 0.7 ± 0.1 mm/y. The yield strength and Young's modulus of the Mg-Zn scaffolds were about 3 times as high as those of pure Mg scaffolds and remained within the range of those of trabecular bone throughout the biodegradation tests. Indirect culture of MC3T3-E1 preosteoblasts in Mg-Zn extracts indicated favorable cytocompatibility. In direct cell culture, some cells could spread and form filopodia on the surface of the Mg-Zn scaffolds. Overall, this study demonstrates the great potential of the extrusion-based AM Mg-Zn scaffolds to be further developed as biodegradable bone-substituting biomaterials.</p>