People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ciftci, Jakub
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Microstructure and Corrosion of Mg-Based Composites Produced from Custom-Made Powders of AZ31 and Ti6Al4V via Pulse Plasma Sinteringcitations
- 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ compositescitations
- 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sinteringcitations
- 2022Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusioncitations
- 2022Corrosion behavior of fine-grained Mg-7.5Li-3Al-1Zn fabricated by extrusion with a forward-backward rotating die (KoBo)citations
- 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites
- 2021Analysis of direct metal laser sintering ‒ DMLS and heat treatment influence on the Inconel 713C nickel alloy structurecitations
- 2020Microstructure and Mechanical Properties of Austenitic 316L Steel Samples Obtained by Selective Laser Melting
Places of action
Organizations | Location | People |
---|
article
Corrosion behavior of fine-grained Mg-7.5Li-3Al-1Zn fabricated by extrusion with a forward-backward rotating die (KoBo)
Abstract
The microstructure-dependent corrosion resistance of dual structured fine-grained Mg-7.5Li-3Al-1Zn has been investigated. The alloys were extruded using extrusion with a forward-backward rotating die (KoBo, a newly developed SPD method) at two different extrusion ratios. The fine-grained microstructures formed in the alloys were characterized, and the influence of grain refinement on corrosion resistance was analyzed. For fine-grained (α + β) Mg-Li alloys, a higher extrusion ratio led to more intensive grain refinement; however, this relationship did not improve their corrosion resistance in a chloride-containing solution. The corrosion resistance of the alloys was mainly controlled by the refinement of α(Mg) and β(Li), along with the distribution of second phases. The presence of MgLi2Al at grain boundaries facilitated their dissolution.