People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mizera, Jaroslaw
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Microstructural, corrosion and mechanical properties of a WE43 alloy: conventional extrusion versus SPDcitations
- 2023Comparison of the performance properties of commercially produced roller cone bit coatingscitations
- 2023Impact of an Aluminization Process on the Microstructure and Texture of Samples of Haynes 282 Nickel Alloy Produced Using the Direct Metal Laser Sintering (DMLS) Techniquecitations
- 2022Increasing the Mechanical Strength and Corrosion Resistance of Aluminum Alloy 7075 via Hydrostatic Extrusion and Agingcitations
- 2022The Effect of Extrusion Ratio on the Corrosion Resistance of Ultrafine-Grained Mg-4Li-3Al-Zn Alloy Deformed Using Extrusion with a Forward-Backward Oscillating Diecitations
- 2022Microstructure and corrosion resistance characteristics of Ti–AlN composite produced by selective laser meltingcitations
- 2022Evolution of microstructure dependent corrosion properties of ultrafine AZ31 under conditions of extrusion with a forward backward oscillating diecitations
- 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sinteringcitations
- 2022Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusioncitations
- 2022Corrosion behavior of fine-grained Mg-7.5Li-3Al-1Zn fabricated by extrusion with a forward-backward rotating die (KoBo)citations
- 2022The Impact of Retained Austenite on the Mechanical Properties of Bainitic and Dual Phase Steelscitations
- 2021Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zncitations
- 2021Influence of bimodal grain size distribution on the corrosion resistance of Mg–4Li–3Al–1Zn (LAZ431)citations
- 2021Analysis of direct metal laser sintering ‒ DMLS and heat treatment influence on the Inconel 713C nickel alloy structurecitations
- 2021Studies of Bainitic Steel for Rail Applications Based on Carbide-Free, Low-Alloy Steelcitations
- 2021Influence of Hydrostatic Extrusion on the Mechanical Properties of the Model Al-Mg Alloyscitations
- 2020The analysis of microstructure and texture evolution in polycrystal and single crystals of nickel after hydrostatic extrusion processcitations
- 2020Influence of Plasma Nitriding on Microstructure of Nickel Superalloy Haynes 282
Places of action
Organizations | Location | People |
---|
article
Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zn
Abstract
This study describes the corrosion resistance of extruded, and extruded with post-processing annealing, Mg–7.5Li–3Al–1Zn alloys. The results demonstrate that extrusion at 350 °C with an extrusion speed 0.5 s−1 does not lead to the full recrystallization of the alloy, and the material still exhibits a dendritic microstructure. The post-processing annealing triggers the microstructure transformation, and the relative composition of the alloy changes. The ratio of β(Li) to α(Mg) in the extruded alloy was 29–71%; after annealing amount of β(Li) increased, and the ratio of β(Li) to α(Mg) in the annealed alloy was 35–65%. Corrosion testing shows that in 3.5 wt% NaCl the extruded alloys immediately undergo strong dissolution. As a result of the subsequent annealing, an improvement of corrosion resistance is observed. The higher amount of β(Li) in the annealed alloy reduces the area ratio of cathodic to anodic sites of corrosion, and this makes the annealed alloy more resistive under the analyzed conditions.