Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lajoinie, Guillaume P. R.

  • Google
  • 5
  • 37
  • 237

University of Twente

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022A theoretical framework for acoustically produced luminescence6citations
  • 2021Multi-timescale Microscopy Methods for the Characterization of Fluorescently-labeled Microbubbles for Ultrasound-Triggered Drug Release8citations
  • 2021Fast and high-resolution ultrasound pressure field mapping using luminescent membranes13citations
  • 2019Multicore Liquid Perfluorocarbon-Loaded Multimodal Nanoparticles for Stable Ultrasound and 19 F MRI Applied to In Vivo Cell Tracking62citations
  • 2017Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds148citations

Places of action

Chart of shared publication
Kersemans, Mathias
2 / 104 shared
Versluis, Michel
4 / 6 shared
Michels, Simon E.
2 / 2 shared
Hedayatrasa, Saeid
1 / 39 shared
Smet, Philippe F.
2 / 8 shared
Snipstad, Sofie
1 / 2 shared
Davies, Catharina De Lange
1 / 1 shared
Mørch, Ýrr
1 / 1 shared
Berg, Sigrid
1 / 1 shared
Segers, Tim
1 / 2 shared
Nawijn, Charlotte
1 / 1 shared
Dinther, Eric A. W. Van
1 / 1 shared
Riessen, N. Koen Van
1 / 1 shared
Schweins, Ralf
1 / 39 shared
Voets, Ilja K.
1 / 10 shared
White, Paul B.
1 / 1 shared
Fokkink, Remco
1 / 5 shared
Dolen, Yusuf
1 / 1 shared
Figdor, Carl G.
1 / 2 shared
Heerschap, Arend
1 / 2 shared
Eck, Ernst R. H. Van
1 / 1 shared
Swider, Edyta
1 / 1 shared
Bombelli, Francesca Baldelli
1 / 4 shared
Cruz, Luis J.
1 / 3 shared
Rogers, Sarah E.
1 / 14 shared
De Korte, Chris
1 / 1 shared
Koshkina, Olga
1 / 4 shared
Srinivas, Mangala
1 / 1 shared
Vries, I. Jolanda M. De
1 / 1 shared
Blanquer, Sébastien B. G.
1 / 4 shared
Sharifi, Shahriar
1 / 5 shared
Hyttinen, Jari
1 / 6 shared
Grijpma, Dirk W.
1 / 35 shared
Hannula, Markus
1 / 13 shared
Poot, André A.
1 / 2 shared
Eglin, David
1 / 8 shared
Werner, Maike
1 / 1 shared
Chart of publication period
2022
2021
2019
2017

Co-Authors (by relevance)

  • Kersemans, Mathias
  • Versluis, Michel
  • Michels, Simon E.
  • Hedayatrasa, Saeid
  • Smet, Philippe F.
  • Snipstad, Sofie
  • Davies, Catharina De Lange
  • Mørch, Ýrr
  • Berg, Sigrid
  • Segers, Tim
  • Nawijn, Charlotte
  • Dinther, Eric A. W. Van
  • Riessen, N. Koen Van
  • Schweins, Ralf
  • Voets, Ilja K.
  • White, Paul B.
  • Fokkink, Remco
  • Dolen, Yusuf
  • Figdor, Carl G.
  • Heerschap, Arend
  • Eck, Ernst R. H. Van
  • Swider, Edyta
  • Bombelli, Francesca Baldelli
  • Cruz, Luis J.
  • Rogers, Sarah E.
  • De Korte, Chris
  • Koshkina, Olga
  • Srinivas, Mangala
  • Vries, I. Jolanda M. De
  • Blanquer, Sébastien B. G.
  • Sharifi, Shahriar
  • Hyttinen, Jari
  • Grijpma, Dirk W.
  • Hannula, Markus
  • Poot, André A.
  • Eglin, David
  • Werner, Maike
OrganizationsLocationPeople

article

A theoretical framework for acoustically produced luminescence

  • Lajoinie, Guillaume P. R.
  • Kersemans, Mathias
  • Versluis, Michel
  • Michels, Simon E.
  • Hedayatrasa, Saeid
  • Smet, Philippe F.
Abstract

<p>Acoustically produced luminescence (APL) can be used for fast and easy mapping of ultrasound pressure fields, allowing quantitative investigation of these fields for a wide range of acoustic frequencies and pressures. APL offers a fast and inexpensive alternative for the conventional point-by-point hydrophone scanning. This can benefit industrial and medical ultrasound applications that experience stringent certification and safety requirements on pressure field characterization. APL was shown to originate from absorption-mediated heating by ultrasound irradiation of a membrane material, which consists of a polymer binder and a luminescent material (or phosphor). This heating induces local thermoluminescence emission, which is proportional to the ultrasound pressure. However, a precise framework describing the physics of the APL process, allowing the retrieval of acoustic field information from the measured light emission has been lacking. Here, we present a full theoretical model of the APL phenomenon, allowing the reconstruction of both the pressure and temperature fields from the measured luminescence. The developed theoretical model is verified using finite-element modeling and experimental validation. We then demonstrate how APL can be used to obtain a 3D reconstruction of an ultrasound pressure field, in a fast and easy way. Finally, the general model demonstrated here can also prove useful for other applications, e.g. in luminescence-based thermometry using persistent phosphors.</p>

Topics
  • impedance spectroscopy
  • polymer
  • luminescence
  • thermoluminescence