Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ksiksi, Regaya

  • Google
  • 1
  • 8
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Synthesis, physicochemical and pharmacological characterizations of a tetra-[methylimidazolium] dihydrogen decavanadate, inhibiting the IGR39 human melanoma cells development2citations

Places of action

Chart of shared publication
Aissaoui-Zid, Dorra
1 / 1 shared
Aissa, Taissir
1 / 1 shared
Zid, Mohamed Faouzi
1 / 2 shared
Srairi-Abid, Najet
1 / 1 shared
Khamessi, Oussema
1 / 1 shared
Ruck, Michael
1 / 74 shared
Moslah, Wassim
1 / 1 shared
Oltermann, Maike
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Aissaoui-Zid, Dorra
  • Aissa, Taissir
  • Zid, Mohamed Faouzi
  • Srairi-Abid, Najet
  • Khamessi, Oussema
  • Ruck, Michael
  • Moslah, Wassim
  • Oltermann, Maike
OrganizationsLocationPeople

article

Synthesis, physicochemical and pharmacological characterizations of a tetra-[methylimidazolium] dihydrogen decavanadate, inhibiting the IGR39 human melanoma cells development

  • Aissaoui-Zid, Dorra
  • Aissa, Taissir
  • Zid, Mohamed Faouzi
  • Srairi-Abid, Najet
  • Khamessi, Oussema
  • Ruck, Michael
  • Moslah, Wassim
  • Oltermann, Maike
  • Ksiksi, Regaya
Abstract

<p>Melanoma is a skin cancer that arises from melanocytes and can spread quickly to the other organs of the body, if not treated early. Generally, melanoma shows an inherent resistance to conventional therapies. In this regard, new potential drugs are being developed as possible treatments for melanoma. In this paper, we report the synthesis of a new decavanadate compound with organic molecules for a potential therapeutic application. The tetra-[methylimidazolium] dihydrogen decavanadate(V) salt (C<sub>4</sub>H<sub>7</sub>N<sub>2</sub>)<sub>4</sub>[H<sub>2</sub>V<sub>10</sub>O<sub>28</sub>] is characterized by single-crystal X-ray diffraction, by FT-IR, UV–Vis and <sup>51</sup>V NMR spectroscopy, as well as by thermal analysis (TGA and DSC). The compound crystallizes in the monoclinic centrosymmetric space group P2<sub>1</sub>/c. Its formula unit consists of one dihydrogen decavanadate anion [H<sub>2</sub>V<sub>10</sub>O<sub>28</sub>]<sup>4−</sup> and four organic 4-methylimidazolium cations (C<sub>4</sub>H<sub>7</sub>N<sub>2</sub>)<sup>+</sup>. Important intermolecular interactions are N-H···O and O-H···O hydrogen bonds and π-π stacking interactions between the organic cations, revealed by analysis of the Hirshfeld surface and its two-dimensional fingerprint plots. Interestingly, this compound inhibits the viability of IGR39 cells with IC<sub>50</sub> values of 14.65 μM and 4 μM after 24 h and 72 h of treatment, respectively. The analysis of its effect by flow cytometry using an Annexin V-FITC/IP cell labeling, showed that (C<sub>4</sub>H<sub>7</sub>N<sub>2</sub>)<sub>4</sub>H<sub>2</sub>V<sub>10</sub>O<sub>28</sub> compound induced IGR39 cell apoptosis and necrosis. Molecular docking studies performed against TNFR1 and GPR40, as putative targets, suggest that the (C<sub>4</sub>H<sub>7</sub>N<sub>2</sub>)<sub>4</sub>[H<sub>2</sub>V<sub>10</sub>O<sub>28</sub>] compound may act as inhibitor of these proteins, known to be overexpressed in melanoma cells. Therefore, we could consider it as a new potential metallodrug against melanoma.</p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • x-ray diffraction
  • Hydrogen
  • thermogravimetry
  • differential scanning calorimetry
  • two-dimensional
  • Nuclear Magnetic Resonance spectroscopy
  • space group
  • ion chromatography