People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Llopis, X.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Renewable Protein A modified graphite-epoxy composite for electrochemical immunosensing
Abstract
A novel rigid and renewable transducing material for electrochemical immunosensing, based on Protein A bulk-modified graphite-epoxy biocomposite (ProtA-GEB) is reported. Protein A is able to bind to the Fc region of antibodies and provide an affinity matrix for antibody immobilisation onto the transducer. The rigid conducting biocomposite acts not only as a transducer, but also as a reservoir for protein A. After use, the electrode surface can be renewed by a simple polishing procedure, highlighting a clear advantage of this new approach with respect to classical immunoassays. The performance of ProtA-GEB transducers was compared with surface-modified transducers based on a simple dry adsorption procedure, where both Protein A and directly the antibody were adsorbed onto the surface of graphite-epoxy composite (ProtA/GEC and IgG/GEC, respectively). The application of the new biocomposite material in electrochemical immunosensing was studied using a model competitive immunoassay. The immunological reaction was detected using an enzymatic-labeling procedure together with the amperometric detection through a suitable substrate (H 2O2) for the enzyme (HRP). The enzymatic labelling was performed using a two-step procedure based on the biotin/streptavidin interaction as well as a one-step procedure using an antibody labelled with the enzyme. Electrochemical and microscopic characterisation of ProtA-GEB transducer, optimisation of the immunosensor design as well as the stability of this material are also reported. © 2004 Elsevier B.V. All rights reserved.