Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Beckett, Christopher T. S.

  • Google
  • 1
  • 3
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Evolution of meniscus structures in hydrophobic granular systems6citations

Places of action

Chart of shared publication
Medero, Gabriela
1 / 1 shared
Karatza, Zeynep
1 / 1 shared
Buckman, Jim
1 / 15 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Medero, Gabriela
  • Karatza, Zeynep
  • Buckman, Jim
OrganizationsLocationPeople

article

Evolution of meniscus structures in hydrophobic granular systems

  • Beckett, Christopher T. S.
  • Medero, Gabriela
  • Karatza, Zeynep
  • Buckman, Jim
Abstract

<p>Hydrophobic soils, which form naturally in arid regions or after forest fires, can be problematic for land managers and engineers as they are often associated with impeded or preferential flow paths, increased surface runoff and soil erosion. However, the reduced rainwater infiltration capacity of water-repellent soils can also result in the improvement of the stability of slopes, landfills and capillary barrier cover systems, amongst others. Understanding the hydraulic conditions within these materials is critical if issues of stability and seepage are to become tractable. Traditional understanding of unsaturated hydrophobic soils suggests that convex water menisci, and so positive water pressures, should form between soil particles. However, the limited experimental results presented in the literature do not support this theory. In this work, the effect of particle shape on the formation and evolution of water meniscus structures is investigated at the macro (multiple particles) and particle scales, contrasting meniscus behaviours between spherical glass beads and angular sand grains. The spreading of a sessile drop in the macro-scale is examined and found that the angularity of the sand grains has a significant effect on the apparent contact angle of a sessile drop when deposited on a mono-layer of particles. At the particle scale, Environmental Scanning Electron Microscopy was used to investigate the formation and evolution of capillary bridges and the water retention hysteresis during two wetting and drying cycles. Again, it is shown that the shape and surface roughness of the particles are controlling factors in both the formation and evolution of liquid bridges and that stable convex and concave menisci can co-exist simultaneously between hydrophobic particle surfaces. Additionally, it was found that the hydrophobic nature of the particles allowed menisci to form across much larger separation distances than could be achieved through film coalescence between hydrophilic surfaces, with possible consequences for infiltration and imbibition modelling and, more broadly, manufacturing processes relying on hydrophobic substrates. Lastly, the hydrophobic soils qualitatively exhibited overall much less hysteresis of the water retention curve than their hydrophilic counterparts.</p>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • theory
  • glass
  • glass
  • laser emission spectroscopy
  • environmental scanning electron microscopy
  • drying
  • particle shape