People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hofmann, Thilo
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Influence of plastic shape on interim fragmentation of compostable materials during compostingcitations
- 2023Fragmentation and Mineralization of a Compostable Aromatic–Aliphatic Polyester during Industrial Compostingcitations
- 2023Iron nitride nanoparticles for rapid dechlorination of mixed chlorinated ethene contaminationcitations
- 2022Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylenecitations
- 2022Effect of Polymer Properties on the Biodegradation of Polyurethane Microplasticscitations
- 2019Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplasticcitations
- 2016Can sodium humate coating on mineral surfaces hinder the deposition of nZVI?
- 2015Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meatcitations
Places of action
Organizations | Location | People |
---|
article
Iron nitride nanoparticles for rapid dechlorination of mixed chlorinated ethene contamination
Abstract
Sulfidation and, more recently, nitriding have been recognized as promising modifications to enhance the selectivity of nanoscale zero-valent iron (nZVI) particles for trichloroethene (TCE). Herein, we investigated the performance of iron nitride (FexN) nanoparticles in the removal of a broader range of chlorinated ethenes (CEs), including tetrachloroethene (PCE), cis-1,2-dichloroethene (cis-DCE), and their mixture with TCE, and compared it to the performance of sulfidated nZVI (S-nZVI) prepared from the same precursor nZVI. Two distinct types of iron nitride (FexN) nanoparticles, containing γ'-Fe4N and ε-Fe2-3N phases, exhibited substantially higher PCE and cis-DCE dechlorination rates compared to S-nZVI. A similar effect was observed with a CE mixture, which was completely dechlorinated by both types of FexN nanoparticles within 10 days, whereas S-nZVI was able to remove only about half of the amount, most of which being TCE. Density functional theory calculations further revealed that the cleavage of the first C-Cl bond was the rate-limiting step for all CEs dechlorinated on the γ'-Fe4N(001) surface, with the reaction barriers of PCE and cis-DCE being 29.9, and 40.8 kJ mol-1, respectively. FexN nanoparticles proved to be highly effective in the remediation of PCE, cis-DCE, and mixed CE contamination.