People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vadivel, Vinod Kumar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Solvothermal Synthesis of g-C3N4/TiO2 Hybrid Photocatalyst with a Broaden Activation Spectrumcitations
- 2023Cu-coated graphitic carbon nitride (Cu/CN) with ideal photocatalytic and antibacterial propertiescitations
- 2021Aerogels for water treatmentcitations
- 2020Ethanol-activated granular aerogel as efficient adsorbent for persistent organic pollutants from real leachate and hospital wastewatercitations
Places of action
Organizations | Location | People |
---|
article
Ethanol-activated granular aerogel as efficient adsorbent for persistent organic pollutants from real leachate and hospital wastewater
Abstract
<p>Hydrophobic aerogels were used to remove three types of persistent organic pollutants: pharmaceutical drugs (i.e. doxorubicin [DOX], paclitaxel [TAX]), phthalates (diethyl phthalate [DEP]), and hydrophilic rhodamine dye (RhB) from synthetic and real wastewaters, using Lumira granular aerogel from Cabot activated with EtOH (ET-GAG). The hydrophobic silica aerogel was characterized by X-ray diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Brunauer–Emmet–Teller (BET) and attenuated total reflection–Fourier transform infrared spectroscopy. The pollutants were analysed by high-performance liquid chromatography (HPLC)–UV and HPLC–mass spectrometry. The adsorption process was governed by hydrophobic- hydrophobic interactions between the ET-GAG and micropollutants. The adsorption capacity of ET-GAG, examined by batch experiments, for DOX, TAX and DEP were 13.80, 14.28 and 17.54 mg/g respectively. The rate of adsorption to ET-GAG is high in the initial 40 min followed by no change in the rate due to saturation of adsorption sites. ET-GAG was able to completely remove micropollutants from real leachate and hospital wastewater, implying practical applications. Regeneration of the aerogel was studied by solvent extraction. Et-GAG adsorbent demonstrated better removal of toxic chemotherapeutic drugs and phthalates than GAC.</p>