People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cundy, Andy
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2020Novel nanostructured iron oxide cryogels for arsenic (As(III)) removalcitations
- 2019A cryogel-based bioreactor for water treatment applicationscitations
- 2019Flexural performance of reinforced concrete beams strengthened with fibre reinforced geopolymer concrete under accelerated corrosioncitations
- 2018A novel corrosion resistant repair technique for existing reinforced concrete (RC) elements using polyvinyl alcohol fibre reinforced geopolymer concrete (PVAFRGC)citations
- 2017Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial propertiescitations
- 2017Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristicscitations
- 2017Effect of undensified silica fume on the dispersion of carbon nanotubes within a cementitious compositecitations
- 2017Mechanical performance of novel cement-based composites prepared with nano-fibres, and hybrid nano- and micro-fibrescitations
- 2016Development of geopolymer mortar under ambient temperature for in situ applicationscitations
- 2014y-Al2O3-based nanocomposite adsorbents for arsenic(V) removal: Assessing performance, toxicity and particle leakagecitations
- 2012Driving forces of conformational changes in single-layer graphene oxidecitations
- 2011High efficiency removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer compositescitations
- 2005Electrokinetic iron pan generation in unconsolidated sediments: implications for contaminated land remediation and soil engineeringcitations
Places of action
Organizations | Location | People |
---|
article
Novel nanostructured iron oxide cryogels for arsenic (As(III)) removal
Abstract
Novel macroporous iron oxide nanocomposite cryogels were synthesized and assessed as arsenite (As(III)) adsorbents. The two-step synthesis method, by which a porous nanonetwork of iron oxide is firstly formed, allowed a homogeneous dispersion of the iron oxide in the cryogel reaction mixture, regardless of the nature of the co-polymer forming the cryogel structure. The cryogels showed excellent mechanical properties, especially the acrylamide-based cryogel. This gel showed the highest As(III) adsorption capacity, with the maximum value estimated at 118 mg/g using the Langmuir model. The immobilization of the nanostructured iron oxide gel into the cryogel matrix resulted in slower adsorption kinetics, however the cryogels offer the advantage of a stable three-dimensional structure that impedes the release of the iron oxide nanoparticles into the treated effluent. A preliminary toxicity evaluation of the cryogels did not indicate any apparent inhibition of human hepatic cells activity, which together with their mechanical stability and high adsorption capacity for As(III) make them excellent materials for the development of nanoparticle based adsorption devices for drinking water treatment.