People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kirkelund, Gunvor Marie
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Mapping circular economy practices for steel, cement, glass, brick, insulation, and wood – A review for climate mitigation modelingcitations
- 2022Influence of ash type and mixing methods on workability and compressive strength when using Greenlandic MSWI fly ash as cement replacement in mortar
- 2022Effects of Chlorides and Sulphates on Heavy Metal Leaching from Mortar with Raw and Electrodialytically Treated MSWI Fly Ashcitations
- 2021Impact of electrodialytic remediation of MSWI fly ash on hydration and mechanical properties of blends with Portland cementcitations
- 2020Screening of untreated municipal solid waste incineration fly ash for use in cement-based materials: chemical and physical propertiescitations
- 2019Characterization of sewage sludge ash and its effect on moisture physics of mortarcitations
- 2019Electrodialytically treated MSWI fly ash use in clay bricks
- 2019Screening Untreated Municipal Solid Waste Incineration Fly Ash for Use in Cement-Based Materials – Chemical and Physical Properties
- 2018Using polycarbobetaines for cu recovery from catholytes generated by electrodialytic treatment of sewage sludge ash
- 2017Colour, compressive strength and workability of mortars with an iron rich sewage sludge ashcitations
- 2016Wood ash used as partly sand and/or cement replacement in mortarcitations
- 2016Replacement of 5% of OPC by fly ash and APC residues from MSWI with electrodialytic pre-treatment
- 2015Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the processcitations
- 2015Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sedimentscitations
- 2014Electrodialytically treated MSWI APC residue as substitute for cement in mortar
- 2014The Aesthetical quality of SSA-containing mortar and concrete
- 2013Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediationcitations
- 2012Electrodialytic remediation of suspended soil – Comparison of two different soil fractionscitations
- 2012Testing the possibility for reusing mswi bottom ash in Greenlandic road construction
- 2012Characterisation of MSWI bottom ash for potential use as subbase in Greenlandic road construction
- 2009Electrodialytic remediation of harbour sediment in suspension - Evaluation of effects induced by changes in stirring velocity and current density on heavy metal removal and pHcitations
- 2007Electrodialytic extraction of Cd and Cu from sediment from Sisimiut Harbour, Greenlandcitations
- 2005Acidification of Harbour sediment and removal of heavy metals induced by water splitting in electrodialytic remediation.citations
Places of action
Organizations | Location | People |
---|
article
Electrodialytic remediation of suspended soil – Comparison of two different soil fractions
Abstract
Electrodialytic remediation (EDR) can be used for removal of heavy metals from suspended soil, which allows for the soil remediation to be a continuous process. The present paper focused on the processing parameters for remediation of a soil polluted with Cu and As from wood preservation. Six electrodialytic treatments lasting from 5 to 22 days with different liquid to solid ratio (L/S) and current intensity were conducted. Among treatments, the highest removal was obtained from the soil fines with 5mA current at L/S 3.5 after 22 days where 96% of Cu and 64% of As were removed. Comparing the removal from the original soil and the soil fines in experiments with identical charge transportation, higher removal efficiency was observed from the soil fines. Constant current with 5mA could be maintained at L/S 3.5 for the soil fines while not for the original soil. Doubling current to 10mA could not be maintained for the soil fines either, and doubling L/S to 7 at 5mA entailed a very fast acidification which impeded the removal. The results showed that a very delicate balancing of current density and L/S must be maintained to obtain the most efficient removal.