People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Scott, T. B.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2016The effect of sample preparation on uranium hydridingcitations
- 2016Quantification of sigma-phase evolution in thermally aged 2205 duplex stainless steelcitations
- 2016Magnetic force microscopy as a phase characterisation technique in stainless steels
- 2016Structural effects in UO2 thin films irradiated with U ionscitations
- 2015Characterisation of electrodeposited polycrystalline uranium dioxide thin films on nickel foil for industrial applicationscitations
- 2015Comparison between magnetic force microscopy and electron back-scatter diffraction for ferrite quantification in type 321 stainless steelcitations
- 2014Characterization of poly- and single-crystal uranium-molybdenum alloy thin filmscitations
- 2014Growth and characterization of uranium-zirconium alloy thin films for nuclear industry applicationscitations
- 2011The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapourcitations
Places of action
Organizations | Location | People |
---|
article
The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour
Abstract
The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO3·xH2O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium–water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets.