People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vilar, Vjp
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2022A Novel ceramic tubular membrane coated with a continuous graphene-TiO2 nanocomposite thin-film for CECs mitigationcitations
- 2022Tubular photobioreactors illuminated with LEDs to boost microalgal biomass productioncitations
- 2019Intensifying heterogeneous TiO2 photocatalysis for bromate reduction using the NETmix photoreactorcitations
- 2019Removal of bromate from drinking water using a heterogeneous photocatalytic mili-reactor: impact of the reactor material and water matrixcitations
- 2016Design of a fixed-bed ion-exchange process for the treatment of rinse waters generated in the galvanization process using Laminaria hyperborea as natural cation exchangercitations
- 2016Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processescitations
- 2015Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachatecitations
- 2015Degradation of trimethoprim antibiotic by UVA photoelectro-Fenton process mediated by Fe(III)-carboxylate complexescitations
- 2015Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewatercitations
- 2014Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT compositescitations
- 2014Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anodecitations
- 2012Insights into UV-TiO2 photocatalytic degradation of PCE for air decontamination systemscitations
- 2012Optimization of nickel biosorption by chemically modified brown macroalgae (Pelvetia canaliculata)citations
- 2012Adding value to marine macro-algae Laminaria digitata through its use in the separation and recovery of trivalent chromium ions from aqueous solutioncitations
- 2010Application of the Nernst-Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculatacitations
- 2007Modeling equilibrium and kinetics of metal uptake by algal biomass in continuous stirred and packed bed adsorberscitations
- 2007Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behaviourcitations
Places of action
Organizations | Location | People |
---|
article
Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behaviour
Abstract
Dead algal biomass is a natural material that serves as a basis for developing a new family of sorbent materials potentially suitable for many industrial applications. In this work an algal industrial waste from agar extraction process, algae Gelidium and a composite material obtained by immobilization of the algal waste with polyacrylonitrile (PAN) were physical characterized and used as biosorbents for dyes removal using methylene blue as model. The apparent and real densities and the porosity of biosorbents particles were determined by mercury porosimetry and helium picnometry. The methylene blue adsorption in the liquid phase was the method chosen to calculate the specific surface area of biosorbent particles as it seems to reproduce better the surface area accessible to metal ions in the biosorption process than the N-2 adsorption-desorption dry method. The porous texture of the biosorbents particles was also studied. Equilibrium isotherms are well described by the Langmuir equation, giving maximum uptake capacities of 171, 104 and 74 mg g(-1), respectively for algae, algal waste and composite material. Kinetic experiments at different initial methylene blue concentrations were performed to evaluate the equilibrium time and the importance of the driving force to overcome mass transfer resistances. The pseudo-first-order and pseudo-second-order kinetic models adequately describe the kinetic data. The biosorbents used in this work proved to be promising materials for removing methylene blue from aqueous solutions.