Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Feulvarch, Eric

  • Google
  • 13
  • 33
  • 258

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2023Thermal structural ratcheting simulation—Evaluation of industrial-used constitutive modelscitations
  • 2020New strategy of solid/fluid coupling during numerical simulation of thermo-mechanical processes4citations
  • 2019Analysis of AA2XXX/AA7XXX friction stir welds37citations
  • 2019Analysis of AA2XXX/AA7XXX friction stir welds37citations
  • 2018A new strategy for the numerical modeling of a weld pool19citations
  • 2017Combination of mechanical and chemical pre-treatments to improve nitriding efficiency on pure iron12citations
  • 2016Investigation into the dissimilar friction stir welding of AA7020-T651 and AA6060-T662citations
  • 2015Sensibility analyses of X-FEM for crack propagation in residual stressescitations
  • 2015Banded structures in friction stir welded Al alloys47citations
  • 2014Characterisation of surface martensite-austenite transformation during finish turning of an AISI S15500 stainless steel15citations
  • 2012Surface integrity prediction in finish turning of 15-5PH stainless steel18citations
  • 20113D numerical prediction of residual stresses in turning of 15-5PH7citations
  • 2005Modélisation thermomécanique et microstructurale du soudage par friction-malaxage. Développement d'un modèle élément finicitations

Places of action

Chart of shared publication
Martin, Antoine
1 / 5 shared
Bergheau, Jean-Michel
5 / 32 shared
Ancelet, Olivier
1 / 3 shared
Macedo, Jean
1 / 1 shared
Chapuliot, Stéphane
1 / 5 shared
Saadlaoui, Yassine
2 / 3 shared
Leblond, Jean-Baptiste, B.
1 / 1 shared
Delache, Alexandre
2 / 3 shared
Bocher, Philippe
3 / 22 shared
Zedan, Yasser
2 / 12 shared
Robe, Hugo
3 / 3 shared
Bertrand, Rémi
2 / 4 shared
Texier, Damien
1 / 48 shared
Leblond, Jean-Baptiste
1 / 9 shared
Kermouche, Guillaume
1 / 48 shared
Morel, Constance
1 / 2 shared
Langlade, Cécile
1 / 18 shared
Peres, Véronique
1 / 24 shared
Lacaille, Victor
1 / 2 shared
Claudin, Christophe
1 / 1 shared
Giraud, Landry
1 / 1 shared
Desrayaud, Christophe
2 / 28 shared
Caron, Axelle
1 / 1 shared
Fontaine, Mickael
1 / 1 shared
Geuffrard, Marion
1 / 3 shared
Tongne, Amèvi
1 / 6 shared
Jahazi, M.
1 / 7 shared
Rech, Joël
1 / 19 shared
Coret, Michel
3 / 38 shared
Mondelin, Alexandre
3 / 8 shared
Rech, Joel
2 / 8 shared
Valiorgue, Frederic
2 / 5 shared
Boitout, Frédéric
1 / 2 shared
Chart of publication period
2023
2020
2019
2018
2017
2016
2015
2014
2012
2011
2005

Co-Authors (by relevance)

  • Martin, Antoine
  • Bergheau, Jean-Michel
  • Ancelet, Olivier
  • Macedo, Jean
  • Chapuliot, Stéphane
  • Saadlaoui, Yassine
  • Leblond, Jean-Baptiste, B.
  • Delache, Alexandre
  • Bocher, Philippe
  • Zedan, Yasser
  • Robe, Hugo
  • Bertrand, Rémi
  • Texier, Damien
  • Leblond, Jean-Baptiste
  • Kermouche, Guillaume
  • Morel, Constance
  • Langlade, Cécile
  • Peres, Véronique
  • Lacaille, Victor
  • Claudin, Christophe
  • Giraud, Landry
  • Desrayaud, Christophe
  • Caron, Axelle
  • Fontaine, Mickael
  • Geuffrard, Marion
  • Tongne, Amèvi
  • Jahazi, M.
  • Rech, Joël
  • Coret, Michel
  • Mondelin, Alexandre
  • Rech, Joel
  • Valiorgue, Frederic
  • Boitout, Frédéric
OrganizationsLocationPeople

article

New strategy of solid/fluid coupling during numerical simulation of thermo-mechanical processes

  • Bergheau, Jean-Michel
  • Saadlaoui, Yassine
  • Leblond, Jean-Baptiste, B.
  • Delache, Alexandre
  • Feulvarch, Eric
Abstract

International audience ; In this study, numerical methods are developed to simulate thermomechanical processes, taking into account both the fluid flows in the molten pool and the deformations of the solid parts. The methods are based on a new strategy of solid/fluid coupling. They allow to simulate the formation of the molten pool by taking into account the fluid flows through both effects of the surface tension (‘‘curvature effect’’ and ‘‘Marangoni effect’’) and the buoyancy. An ALE approach is used to follow the evolution of the free surface. The effects of the deformations in the base metal on the fluid flows in the molten pool (solid/fluid interaction) is ensured by imposing the velocities of the solid nodes during the thermo-fluid simulation. As an application, a thermo-fluid-mechanical simulation of laser welding is carried out. It is found that the solid/fluid interaction has a minor effect on simulation results.

Topics
  • impedance spectroscopy
  • surface
  • simulation