People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Østergaard, Martin Bonderup
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Anomaly in the relation between thermal conductivity and crystallinity of silicate glass-ceramicscitations
- 2024Suppressing the thermal conduction in glass–ceramic foams by controlling crystallizationcitations
- 2024Crystallinity dependence of thermal and mechanical properties of glass-ceramic foamscitations
- 2024A self-cleaning thermocatalytic membrane for bisphenol a abatement and fouling removalcitations
- 2023A Thermocatalytic Ceramic Membrane by Perovskite Incorporation in the Alumina Frameworkcitations
- 2023Thermocatalytic Performance of LaCo1−xNixO3−δ Perovskites in the Degradation of Rhodamine Bcitations
- 2023Beneficial effect of cerium excess on in situ grown Sr0.86Ce0.14FeO3–CeO2 thermocatalysts for the degradation of bisphenol Acitations
- 2023Beneficial effect of cerium excess on in situ grown Sr 0.86 Ce 0.14 FeO 3 –CeO 2 thermocatalysts for the degradation of bisphenol Acitations
- 2022Fracture energy of high-Poisson’s ratio oxide glassescitations
- 2021The foaming mechanism of glass foams prepared from the mixture of Mn 3 O 4 , carbon and CRT panel glasscitations
- 2021The foaming mechanism of glass foams prepared from the mixture of Mn3O4, carbon and CRT panel glasscitations
- 2021Degradation of organic micropollutants in water using a novel thermocatalytic membrane
- 2020Structure Dependence of Poisson’s Ratio in Cesium Silicate and Borate Glassescitations
- 2019Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glassescitations
- 2018Effect of alkali phosphate content on foaming of CRT panel glass using Mn3O4 and carbon as foaming agentscitations
- 2017Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glasscitations
- 2017Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering
- 2017Foaming Glass Using High Pressure Sintering
- 2016Influence of foaming agents on both the structure and the thermal conductivity of silicate glasses
Places of action
Organizations | Location | People |
---|
article
Crystallinity dependence of thermal and mechanical properties of glass-ceramic foams
Abstract
Glass foams and glass-ceramic foams exhibit great potential in thermal insulation of buildings, consequently reducing the necessity for heating or cooling, and ultimately contributing to energy saving. In this study, we prepared glass-ceramic foams utilizing silicate glass as starting material and CaCO3 as foaming agent through a thermochemical process. Foams with varying degrees of relative crystallinity were produced by controlling temperature and duration of isothermal heat treatment. The foaming mechanism in the glass-ceramics was discussed by analyzing how the heat flow, mass, and volume evolve within the powder mixture during dynamic heating. The crystallization in glass did not show any clear trend on the compressive strength of glass foams. On the other hand, the thermal conductivity of the glass-ceramic foams increases with increasing relative crystallinity. The calculated solid thermal conductivity exhibited a minimum at low relative crystallinity (<20 %). These findings are crucial for designing high performance glass-ceramic foams for thermal insulation, potentially also for fabricating glass-ceramic foams using waste glasses.