People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nečina, Vojtěch
University of Chemistry and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Elastic properties and microstructure evolution of Zn2SnO4-spinel-containing composite ceramics based on tin oxide and zinc oxidecitations
- 2024Temperature dependence of Young's modulus and the occurrence of an elastic anomaly in porous alumina-mullite composites prepared by starch consolidation castingcitations
- 2023Highly textured 3D-printed translucent alumina through pressure-assisted sinteringcitations
- 2023The effect of LiF on preparation of transparent Eu:La2Zr2O7 ceramics by SPScitations
- 2023High-temperature mechanical behavior of partially sintered ceramicscitations
- 2022Magnesium fluoride (MgF2) – A novel sintering additive for the preparation of transparent YAG ceramics via SPScitations
- 2021Microstructure and Young's modulus evolution during re-sintering of partially sintered alumina-zirconia composites (ATZ ceramics)citations
- 2021Grain growth of MgAl2O4 ceramics with LiF and NaF additioncitations
- 2021Transparent MgAl2O4 spinel ceramics prepared via sinter-forgingcitations
- 2021PARTIALLY SINTERED LEAD-FREE CERAMICS FROM PIEZOELECTRIC POWDERS PREPARED VIA CONVENTIONAL FIRING AND SPARK PLASMA SINTERING (SPS) - CHARACTERIZATION OF MICROSTRUCTURE AND DIELECTRIC PROPERTIEScitations
- 2021Sintering aids, their role and behaviour in the production of transparent ceramicscitations
- 2020Influence of the heating rate on grain size of alumina ceramics prepared via spark plasma sintering (SPS)citations
- 2020Highly dense spinel ceramics with completely supressed grain growth prepared via SPS with NaF as a sintering additivecitations
- 2020Comparison of the effect of different alkali halides on the preparation of transparent MgAl2O4 spinel ceramics via spark plasma sintering (SPS)citations
- 2020Temperature dependence of Young's modulus and damping of partially sintered and dense zirconia ceramicscitations
Places of action
Organizations | Location | People |
---|
article
Elastic properties and microstructure evolution of Zn2SnO4-spinel-containing composite ceramics based on tin oxide and zinc oxide
Abstract
Ceramics based on tin oxide (SnO2) and zinc oxide (ZnO) were sintered at temperatures up to 1400 °C. Except for the end members, all these ceramics are two- or three-phase composites containing spinel phase (Zn2SnO4). Similar to pure SnO2 ceramics, also the spinel-rich composite (50:50 mixture) does not exhibit densification after sintering at 1400 °C. Spinel Zn2SnO4 is formed in all composites, with a major increase of spinel content at around 1000 °C. Young's modulus values, determined via impulse excitation, are between the exponential relation for convex pores and a benchmark relation for concave pores (or a percolation relation). The evolution of Young's modulus during sintering reveals significant differences between SnO2 (weak increase above 1000 °C), ZnO (significant increase above 800 °C) and the composites (intermediate). Spinel formation is revealed during heating by a distinct peak (elastic anomaly) at around 1000 °C. © 2024 Elsevier Ltd