Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stern, Kevin E.

  • Google
  • 2
  • 5
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Computational characterisation of microwave heating of fibre preforms for CVI of SiCf/SiC composites9citations
  • 2021Computational Characterization of Microwave-Enhanced CVI Production of SiCf/SiC Compositescitations

Places of action

Chart of shared publication
Binner, Jon
2 / 36 shared
Porter, Matthew T.
2 / 2 shared
Cinibulk, Michael K.
1 / 2 shared
Yakovlev, Vadim V.
1 / 3 shared
Kumi, Petra
1 / 2 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Binner, Jon
  • Porter, Matthew T.
  • Cinibulk, Michael K.
  • Yakovlev, Vadim V.
  • Kumi, Petra
OrganizationsLocationPeople

article

Computational characterisation of microwave heating of fibre preforms for CVI of SiCf/SiC composites

  • Binner, Jon
  • Stern, Kevin E.
  • Porter, Matthew T.
  • Cinibulk, Michael K.
  • Yakovlev, Vadim V.
Abstract

Silicon carbide fibre reinforced silicon carbide matrix composites (SiCf/SiC) are known as materials with high-performance mechanical properties for the aerospace industry. Microwave-enhanced (ME) chemical vapour infiltration (CVI) heating of ceramic matrix composites is potentially an energy efficient production technique capable of yielding near fully dense SiCf/SiC composites in a much shorter time span. This paper reports on the output of computational analysis of electromagnetic (EM) and thermal characteristics of the ME CVI process occurring with thin circular SiC fibre preform in a Labotron microwave system from SAIREM. Computer simulation is performed with the use of the finite-difference time-domain technique implemented in QuickWave computational environment. Multiple puzzling phenomena observed in the earlier experimental work are illuminated in the present study and the causes for the formation of microwave-induced temperature fields are clarified. With the use of the developed EM model, resonant and non-resonant frequencies of the Labotron system for different temperatures of the processed samples are analysed to explain the differences and variability in heating rates. This showed that when microwave processing of small SiC samples, energy coupling is extremely sensitive to frequency: a change of the reflection coefficient from 0.05 (absorbing) to 0.75 (reflective) could be made by a drift as small as 0.003–0.005 GHz, respectively, indicating the importance of scaling the microwave cavity to the sample size and the ability to precisely control the frequency of the microwave source. Moreover, energy coupling is temperature-dependent: low reflections produces very high heating rates (greater than 550 ℃ min-1); the opposite is true for high reflections where heating rates are significantly slower. Temperature fields in the SiC fibre preforms are computed with the coupled EM-thermal model at different frequencies. It is shown that while being highly non-uniform in the beginning of the process, temperature patterns evolve to being fairly homogeneous by its end. Overall, the results suggest a means for better control of the equipment to pave the way to more efficient, controlled, and repeatable implementations of the ME CVI technology to produce high quality SiCf/SiC composites.

Topics
  • impedance spectroscopy
  • simulation
  • carbide
  • composite
  • Silicon