People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Uhlířová, Tereza Unger
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Temperature dependence of Young's modulus and the occurrence of an elastic anomaly in porous alumina-mullite composites prepared by starch consolidation castingcitations
- 2023High-temperature mechanical behavior of partially sintered ceramicscitations
- 2022Quasi-laminate and quasi-columnate modeling of dielectric and piezoelectric properties of cubic-cell metamaterialscitations
- 2021Computer modeling of systematic processing defects on the thermal and elastic properties of open Kelvin-cell metamaterialscitations
Places of action
Organizations | Location | People |
---|
article
Computer modeling of systematic processing defects on the thermal and elastic properties of open Kelvin-cell metamaterials
Abstract
Open-cell metamaterials prepared by additive manufacturing or replica techniques are typically prone to processing defects resulting from limited resolution, strut cross-section variations or internal strut porosity. These defects are expected to cause deviations from the ideal (CAD-based or template-based) target microstructures and thus from the envisaged properties. This paper investigates some of these effects in a quantitative manner. Based on computer-generated open Kelvin-cell (tetrakaidecahedral) alumina-based metamaterials, the effective thermal conductivity and elastic constants, mainly Young's modulus, are calculated in dependence of the voxel size, strut thinning and strut wall thickness. It is shown that the porosity dependence of smooth, straight and full struts agrees closely to the Gibson-Ashby prediction for open-cell foams, while limited resolution and strut thinning leads to property values that tend to be lower and hollow struts lead to higher property values. The Pabst-Gregorova cross-property relation gives an excellent prediction of the conductivity-modulus correlation in all cases.