People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gregorová, Eva
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Temperature dependence of Young's modulus and the occurrence of an elastic anomaly in porous alumina-mullite composites prepared by starch consolidation castingcitations
- 2021Microstructure and Young's modulus evolution during re-sintering of partially sintered alumina-zirconia composites (ATZ ceramics)citations
- 2020Temperature dependence of Young's modulus and damping of partially sintered and dense zirconia ceramicscitations
Places of action
Organizations | Location | People |
---|
article
Microstructure and Young's modulus evolution during re-sintering of partially sintered alumina-zirconia composites (ATZ ceramics)
Abstract
Partially and fully sintered alumina-zirconia composites (ATZ ceramics), with porosities decreasing from 53.5 to 1 %, have been prepared by uniaxial pressing and firing at 1000-1500 degrees C and characterized by the Archimedes method and mercury intrusion porosimetry. Young's modulus has been measured via the impulse excitation technique at room temperature, resulting in an almost exponential porosity dependence (which is unusual for partially sintered ceramics in which the microstructure is dominated by concave pore surfaces), and at elevated temperatures up to 1500 degrees C during heating and cooling, resulting in a temperature master curve with a low temperature inflection point around 200 degrees C (accompanied by a damping maximum). Both results confirm previous findings for zirconia and are typical for zirconia-containing ceramics. When the original firing temperature is exceeded, sintering and densification continues, albeit with a temperature lag when the sintering activity (specific surface area) is reduced as a consequence of previous firing.