People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deville, Sylvain
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2022Nacre-like alumina composites reinforced by zirconia particlescitations
- 2022Toughening mechanisms in nacre-like alumina revealed by in-situ imaging of stresscitations
- 2021Mechanical properties of unidirectional, porous polymer/ceramic composites for biomedical applicationscitations
- 2020Nacre-like alumina composites based on heteroaggregationcitations
- 2020A simple approach to bulk bioinspired tough ceramicscitations
- 2020Determination of interface fracture properties by micro-and macro-scale experiments in nacre-like aluminacitations
- 2020Interface failure in nacre-like aluminacitations
- 2020Strength and toughness trade-off optimization of nacre-like ceramic compositescitations
- 2019Ice-templated poly(vinylidene fluoride) ferroelectretscitations
- 2019Elasticity and fracture of brick and mortar materials using discrete element simulationscitations
- 2018Synthesis of Functional Ceramic Supports by Ice Templating and Atomic Layer Depositioncitations
- 2018Five-dimensional imaging of freezing emulsions with solute effectscitations
- 2018Synthesis of functional ceramic supports by ice templating and atomic layer depositioncitations
- 2018Reply to the correspondence:" On the fracture toughness of bioinspired ceramic materials"
- 2018Ice-templated poly(vinylidene fluoride) ferroelectretscitations
- 2017Fabrication of ice-templated tubes by rotational freezing: Microstructure, strength, and permeabilitycitations
- 2014Strong, tough and stiff bioinspired ceramics from brittle constituentscitations
- 2014Lightweight and stiff cellular ceramic structures by ice templatingcitations
- 2014Strong, tough and stiff bioinspired ceramics from brittle constituentscitations
- 2014Templated Grain Growth in Macroporous Materialscitations
- 2011Reliability assessment in advanced nanocomposite materials for orthopaedic applicationscitations
- 2011Dynamics of the Freezing Front During the Solidification of a Colloidal Alumina Aqueous Suspension: In Situ X-Ray Radiography, Tomography, and Modelingcitations
- 2009Metastable and unstable cellular solidification of colloidal suspensionscitations
- 2007Fabrication andin vitro characterization of three-dimensional organic/inorganic scaffolds by robocastingcitations
- 2004Martensitic transformation in zirconia, part II : martensitic growth
- 2004Accelerated aging in 3mol.p.c. yttria stabilized zirconia ceramics sintered in reducing conditions
- 2004Modeling the aging kinetics of zirconia ceramics
- 2003Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants
Places of action
Organizations | Location | People |
---|
article
Nacre-like alumina composites based on heteroaggregation
Abstract
International audience ; High strength and high toughness are usually mutually exclusive in materials. Among all material classes, ceramics exhibit a high stiffness and strength, but they present a limited plastic deformation, which results in a moderate toughness. However, tough ceramics have been obtained using anisotropic particles organized in a 'brick and mortar' microstructure, inspired by the structure of the natural nacre. Here, we propose to build nacre-like ceramic composites from colloidal suspensions using heteroaggregation of particles. Two different shaping processes are used: direct settling of suspensions or freeze-granulation. After sintering, in both cases, the platelets alignment is very good, close to that of platelets in natural nacre, with a slightly better one noted for direct settling. Despite a better platelet alignment, the toughness is lower than in previous studies showing that further improvement of the interfacial phases present in the material must now be considered to reinforce its mechanical behavior.