People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deville, Sylvain
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2022Nacre-like alumina composites reinforced by zirconia particlescitations
- 2022Toughening mechanisms in nacre-like alumina revealed by in-situ imaging of stresscitations
- 2021Mechanical properties of unidirectional, porous polymer/ceramic composites for biomedical applicationscitations
- 2020Nacre-like alumina composites based on heteroaggregationcitations
- 2020A simple approach to bulk bioinspired tough ceramicscitations
- 2020Determination of interface fracture properties by micro-and macro-scale experiments in nacre-like aluminacitations
- 2020Interface failure in nacre-like aluminacitations
- 2020Strength and toughness trade-off optimization of nacre-like ceramic compositescitations
- 2019Ice-templated poly(vinylidene fluoride) ferroelectretscitations
- 2019Elasticity and fracture of brick and mortar materials using discrete element simulationscitations
- 2018Synthesis of Functional Ceramic Supports by Ice Templating and Atomic Layer Depositioncitations
- 2018Five-dimensional imaging of freezing emulsions with solute effectscitations
- 2018Synthesis of functional ceramic supports by ice templating and atomic layer depositioncitations
- 2018Reply to the correspondence:" On the fracture toughness of bioinspired ceramic materials"
- 2018Ice-templated poly(vinylidene fluoride) ferroelectretscitations
- 2017Fabrication of ice-templated tubes by rotational freezing: Microstructure, strength, and permeabilitycitations
- 2014Strong, tough and stiff bioinspired ceramics from brittle constituentscitations
- 2014Lightweight and stiff cellular ceramic structures by ice templatingcitations
- 2014Strong, tough and stiff bioinspired ceramics from brittle constituentscitations
- 2014Templated Grain Growth in Macroporous Materialscitations
- 2011Reliability assessment in advanced nanocomposite materials for orthopaedic applicationscitations
- 2011Dynamics of the Freezing Front During the Solidification of a Colloidal Alumina Aqueous Suspension: In Situ X-Ray Radiography, Tomography, and Modelingcitations
- 2009Metastable and unstable cellular solidification of colloidal suspensionscitations
- 2007Fabrication andin vitro characterization of three-dimensional organic/inorganic scaffolds by robocastingcitations
- 2004Martensitic transformation in zirconia, part II : martensitic growth
- 2004Accelerated aging in 3mol.p.c. yttria stabilized zirconia ceramics sintered in reducing conditions
- 2004Modeling the aging kinetics of zirconia ceramics
- 2003Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants
Places of action
Organizations | Location | People |
---|
article
Interface failure in nacre-like alumina
Abstract
International audience ; Among many bioinspired materials contenders, ceramic-ceramic composites based on alumina platelets have recently emerged as a new class of strong and damage-resistant materials. These materials are brick-and-mortar composites, where bricks are single-crystal alumina platelets, and a glassy interphase acts as the mortar. Although several processing approaches have been reported to date, these materials were optimized so far by trial-and-error approaches. Understanding the fracture properties of nacre-like alumina requires the knowledge of the properties of each of its components. However, only the properties of alumina platelets have been evaluated so far. Here we characterize at a micro scale the fracture property of an aluminosilicate glass interphase between alumina platelets. Micro-cantilever specimens prepared by FIB milling are tested under bending in order to characterize the failure of interfaces exhibiting orientations between 0° and 90° with respect to the beam direction, and thus undergoing different combined shear and tensile stress. Failure appears to be mainly driven by the interface opening stress that seems to predominate over shear stress. The apparent fracture stresses vary from 0.5 GPa to 3.0 GPa depending on the interface angle. It results in a maximum opening stress of 0.72 ± 0.18 GPa reached locally at the interface, whereas the apparent tensile fracture stress of a pack of aligned and perpendicular platelets is approximately 3 GPa. These results should help understand the bulk properties of nacre-like alumina composites and future similar materials and enable a rational design of their components and microstructures.