People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malzbender, Jürgen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes
- 2024Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes.citations
- 2021Optimization of sintering conditions for improved microstructural and mechanical properties of dense Ce0.8Gd0.2O2-δ-FeCo2O4 oxygen transport membranescitations
- 2020Thermo-Mechanical Stability and Gas-Tightness of Glass-Ceramics Joints for SOFC in the System MgO-BaO/SrO-B2O3-SiO2
- 2020Microstructure, ionic conductivity and mechanical properties of tape-cast Li1.5Al0.5Ti1.5P3O12 electrolyte sheetscitations
- 2018Scaling up aqueous processing of A-site deficient strontium titanate for SOFC anode supportscitations
- 2016Oxygen permeation and creep behavior of Ca1-xSrxTi0.6Fe0.15Mn0.25O3-δ (x=0, 0.5) membrane materialscitations
- 2014Mechanical properties of porous MgO substrates for membrane applicationscitations
- 2014Steady-state creep of porous and an extended analysis on the creep of dense BSCFZ perovskitecitations
- 2014Ex-service analysis of membrane tubes after the operation in a demonstrator unitcitations
- 2014Steady-State Creep of Porous and an Extended Analysis on the Creep of Dense BSCFZcitations
Places of action
Organizations | Location | People |
---|
article
Microstructure, ionic conductivity and mechanical properties of tape-cast Li1.5Al0.5Ti1.5P3O12 electrolyte sheets
Abstract
<p>Free-standing Li<sub>1.5</sub>Al<sub>0.5</sub>Ti<sub>1.5</sub>P<sub>3</sub>O<sub>12</sub> electrolyte sheets with a thickness of 50–150 μm were prepared by tape casting followed by sintering at 850–1000 °C in air. While a sintering temperature of 850 °C was too low to achieve appreciable densification and grain growth, a peak relative density of 95% was obtained at 920 °C. At higher sintering temperatures, the microstructure changed from a bimodal grain size distribution towards exclusively large grains (> 10 μm), accompanied by a decrease in relative density (down to 86% at 1000 °C). In contrast, ionic conductivity increased with increasing sintering temperature, from 0.1 mS/cm at 920 °C to 0.3 mS/cm at 1000 °C. Sintering behavior was improved by adding 1.5% of amorphous silica to the slurry. In this way, almost full densification (99.8%) and an ionic conductivity of 0.2 mS/cm was achieved at 920 °C. Mechanical characterization was carried out on the almost fully densified material, yielding elastic modulus and hardness values of 109 and 8.7 GPa, respectively. The fracture strength and Weibull modulus were also characterized. The results confirm that densification and reduction of grain size improve the mechanical properties.</p>