Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saarinen, M.

  • Google
  • 2
  • 8
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Processing and Characterization of Bioactive Borosilicate Glasses and Scaffolds with Persistent Luminescence1citations
  • 2018Persistent luminescent particles containing bioactive glasses13citations

Places of action

Chart of shared publication
Lastusaari, M.
2 / 22 shared
Petit, Laëtitia
2 / 61 shared
Massera, J.
2 / 27 shared
Norrbo, I.
2 / 3 shared
Cerro, P. Roldan Del
1 / 1 shared
Laurila, J.
1 / 3 shared
Nommeots-Nomm, Amy
1 / 8 shared
Hokka, Mikko
1 / 52 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Lastusaari, M.
  • Petit, Laëtitia
  • Massera, J.
  • Norrbo, I.
  • Cerro, P. Roldan Del
  • Laurila, J.
  • Nommeots-Nomm, Amy
  • Hokka, Mikko
OrganizationsLocationPeople

article

Persistent luminescent particles containing bioactive glasses

  • Lastusaari, M.
  • Laurila, J.
  • Petit, Laëtitia
  • Massera, J.
  • Norrbo, I.
  • Nommeots-Nomm, Amy
  • Hokka, Mikko
  • Saarinen, M.
Abstract

<p>In this paper, we demonstrate that persistent luminescent bodies can be obtained by carefully choosing the sintering temperatures and duration. A borosilicate and a phosphate glasses were sintered into bodies with persistent luminescent (PeL) SrAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>,Dy<sup>3+</sup> microparticles which have a green emission up to tens of hours after ceasing irradiation. When sintered at high temperature for a short time or at lower temperature for a longer time, a decrease in the PeL from the bodies was observed and was related to the glasses crystallization. A decrease in the PeL from the bodies was also observed after immersion in simulated body fluid and was related to the mineralization of the sintered bodies. Therefore, we clearly show that by tracking the changes in the PeL overtime, these PeL bodies have a real potential application as biophotonic sensors to track dissolution and mineralization of the implant in the body.</p>

Topics
  • glass
  • glass
  • crystallization
  • sintering