Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lau, Grace Y.

  • Google
  • 1
  • 6
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Fracture behavior of robocast HA/beta-TCP scaffolds studied by X-ray tomography and finite element modeling36citations

Places of action

Chart of shared publication
Gremillard, Laurent
1 / 39 shared
Tomsia, Antoni P.
1 / 6 shared
Adrien, Jérôme
1 / 38 shared
Meille, Sylvain
1 / 44 shared
Petit, Clemence
1 / 2 shared
Maire, Eric
1 / 58 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Gremillard, Laurent
  • Tomsia, Antoni P.
  • Adrien, Jérôme
  • Meille, Sylvain
  • Petit, Clemence
  • Maire, Eric
OrganizationsLocationPeople

article

Fracture behavior of robocast HA/beta-TCP scaffolds studied by X-ray tomography and finite element modeling

  • Gremillard, Laurent
  • Tomsia, Antoni P.
  • Adrien, Jérôme
  • Meille, Sylvain
  • Petit, Clemence
  • Maire, Eric
  • Lau, Grace Y.
Abstract

Hydroxyapatite (HA)/alpha-tricalcium phosphate (alpha-TCP) cellular composites were fabricated by robocasting. Polymeric beads were intentionally added into the solid rods of the samples to generate artificial defects in order to characterize their influence on the fracture behavior in uniaxial compression. The samples were characterized by X-ray tomography at two resolutions to observe their architectural and microstructural features, for the latter using a local tomography mode. Then ex situ compression tests were performed to follow the deformation of the sample at low resolution by tomography. The images showed a brittle-like behavior with the propagation of a main crack parallel to the compression direction. Finally, the high-resolution images of the initial sample were processed to create a finite element (FE) model of the whole sample and including the presence of artificial defects in the struts. The ex situ test and the modeling show the influence of the artificial defects on the crack initiation.

Topics
  • tomography
  • crack
  • composite
  • compression test
  • fracture behavior