People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bjørnetun Haugen, Astri
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Temperature-Dependent Ferroelectric Properties and Aging Behavior of Freeze-Cast Bismuth Ferrite-Barium Titanate Ceramicscitations
- 2023Interfacial Engineering of PVDF-TrFE toward Higher Piezoelectric, Ferroelectric, and Dielectric Performance for Sensing and Energy Harvesting Applicationscitations
- 2023Humidity resistance and recovery of sintered sodium potassium niobate-based piezoelectricscitations
- 2022Freeform injection molding of functional ceramics by hybrid additive manufacturingcitations
- 2022Piezoelectric properties of mechanochemically processed 0.67BiFeO3-0.33BaTiO3 ceramicscitations
- 2021Textured, lead-free piezoelectric ceramics with high figure of merit for energy harvestingcitations
- 2021Low-temperature synthesis of bismuth titanate by modified citrate amorphous methodcitations
- 2019Hybrid atmosphere processing of lead-free piezoelectric sodium potassium niobate-based ceramicscitations
- 2018Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranescitations
- 2018Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranescitations
- 2018Deposition of highly oriented (K,Na)NbO 3 films on flexible metal substratescitations
- 2018Deposition of highly oriented (K,Na)NbO3 films on flexible metal substratescitations
- 2017Oxygen transport properties of tubular Ce 0.9 Gd 0.1 O 1.95 -La 0.6 Sr 0.4 FeO 3−d composite asymmetric oxygen permeation membranes supported on magnesium oxidecitations
- 2017Ceramic processing of tubular, multilayered oxygen transport membranes (Invited)
- 2017Oxygen transport properties of tubular Ce0.9Gd0.1O1.95-La0.6Sr0.4FeO3−d composite asymmetric oxygen permeation membranes supported on magnesium oxidecitations
- 2016Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supportscitations
- 2016Processing and characterization of multilayers for energy device fabrication (invited)
- 2015Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes
- 2015Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes
Places of action
Organizations | Location | People |
---|
article
Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports
Abstract
A gas permeable porous support is a crucial part of an asymmetric oxygen transport membrane (OTM). Here, we develop feedstocks for thermoplastic extrusion of tubular, porous 3Y-TZP (partially stabilized zirconia polycrystals, (Y<sub>2</sub>O<sub>3</sub>)<sub>0.03</sub>(ZrO<sub>2</sub>)<sub>0.97</sub>)) ceramics, using graphite and/or polymethyl methacrylate (PMMA) as pore formers. The influence of pore former content and type, 3Y-TZP particle size and support sintering temperature on the microstructure, porosity and gas permeability were studied. Using at least 40 vol% pore former, consisting of graphite and PMMA in the volume ratio 2:1, tubes with gas permeability exceeding the target of 10<sup>−14</sup>m<sup>2 </sup>are obtained. In the temperature range 1250–1400°C the support gas permeability is insensitive to the sintering temperature, and the feedstocks shrink more than 15% during sintering, making them ideal for co-sintering with functional OTM layers. This demonstrates the suitability of thermoplastic extrusion for fabrication of porous 3Y-TZP OTM supports, or for other technologies requiring porous ceramics.