People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Morgen, Per
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Impact of drug compounds mechanical/deformation properties on the preparation of nano- and microsuspensionscitations
- 2024Impact of drug compounds mechanical/deformation properties on the preparation of nano- and microsuspensionscitations
- 2022Post-degradation case study of the membrane electrode assembly from a low-temperature PEMFC stack
- 2022Post-degradation case study of the membrane electrode assembly from a low-temperature PEMFC stack
- 2022En metode til at danne kobberlag på porøst aluminium oxid (PAO) på et substrat af aluminium legering ; A method for manufacturing copper film on porous aluminum oxide (pao) on an aluminum alloy substrate
- 2022Insights into Degradation of the Membrane–Electrode Assembly Performance in Low-Temperature PEMFC:the Catalyst, the Ionomer, or the Interface?citations
- 2022A method for manufacturing copper film on porous aluminum oxide (pao) on an aluminum alloy substrate
- 2022Insights into Degradation of the Membrane–Electrode Assembly Performance in Low-Temperature PEMFCcitations
- 2020Platinum recycling through electroless dissolution under mild conditions using a surface activation assisted Pt-complexing approachcitations
- 2020Platinum recycling through electroless dissolution under mild conditions using a surface activation assisted Pt-complexing approachcitations
- 2017Growth of aluminum oxide on silicon carbide with an atomically sharp interfacecitations
- 2016The effect of trace amounts of copper on the microstructure, stability and oxidation of macroporous silicon carbidecitations
- 2016The effect of trace amounts of copper on the microstructure, stability and oxidation of macroporous silicon carbidecitations
- 2016The role of aluminium as an additive element in the synthesis of porous 4H-silicon carbidecitations
- 2016The role of aluminium as an additive element in the synthesis of porous 4H-silicon carbidecitations
- 2015The role of Aluminium in the synthesis of Mesoporous 4H Silicon Carbide
- 2015The role of Aluminium in the synthesis of Mesoporous 4H Silicon Carbide
- 2013Investigations on sputter deposited LiCoO2 thin films from powder targetcitations
- 2009Self-activated, self-limiting reactions on Si surfaces
- 2006Epitaxial growth of Al on Si(1 1 1) with Cu buffer layerscitations
Places of action
Organizations | Location | People |
---|
article
The effect of trace amounts of copper on the microstructure, stability and oxidation of macroporous silicon carbide
Abstract
<p>Trace amounts of copper have advantageous effects when creating macroporous silicon carbide monoliths to be used for combined diesel particle filter and catalyst support systems. These structures were produced from a slurry of silicon, graphite, aluminium and copper. Mixed with water, extruded and dried, the resulting bodies were pyrolyzed, sintered, and then partially oxidized, to yield a mechanically stable porous 4H-SiC microstructure with an average pore diameter of 20 μm and average accessible porosity of 57%. The Cu alloys with the Si and Al to create the sintered body via a liquid phase, and prevents the build-up of undesirable Al-containing ternary carbide crystals in the microstructure. The Cu promotes oxidation of SiC to form a 80 nm SiO<sub>2</sub> layer that serves as a good catalyst support. The accelerated oxidation can be intercepted by dissolving the Cu component from the monoliths with an acid solution.</p>