Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Almeida-Didry, Sonia De

  • Google
  • 5
  • 9
  • 208

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023On Recent Progress on Core Shell Nanostructures of Colossal Permittivity Materials for Capacitors: Synthesis and Dielectric Propertiescitations
  • 2019Comparison of colossal permittivity of CaCu3Ti4O12 with commercial grain boundary barrier layer capacitor6citations
  • 2018Control of grain boundary in alumina doped CCTO showing colossal permittivity by core-shell approach89citations
  • 2015Capacitance Scaling of Grain Boundaries with Colossal Permittivity of CaCu3Ti4O12-Based Materials23citations
  • 2014Leading Role of Grain Boundaries in Colossal Permittivity of Doped and Undoped CCTO90citations

Places of action

Chart of shared publication
Autret-Lambert, Cécile
1 / 6 shared
Motret, Olivier
1 / 4 shared
Merad, Samir
1 / 3 shared
Gervais, François
5 / 17 shared
Pacreau, François
4 / 8 shared
Lucas, Anthony
4 / 9 shared
Autret, Cecile
4 / 18 shared
Nomel, Meledje Martin
1 / 3 shared
Honstettre, Christophe
3 / 9 shared
Chart of publication period
2023
2019
2018
2015
2014

Co-Authors (by relevance)

  • Autret-Lambert, Cécile
  • Motret, Olivier
  • Merad, Samir
  • Gervais, François
  • Pacreau, François
  • Lucas, Anthony
  • Autret, Cecile
  • Nomel, Meledje Martin
  • Honstettre, Christophe
OrganizationsLocationPeople

article

Leading Role of Grain Boundaries in Colossal Permittivity of Doped and Undoped CCTO

  • Almeida-Didry, Sonia De
  • Pacreau, François
  • Honstettre, Christophe
  • Gervais, François
  • Lucas, Anthony
  • Autret, Cecile
Abstract

The role of grain boundaries in the colossal permittivityof doped and undoped calcium copper titanate, CaCu3Ti4O12 (CCTO), is illustrated by a first correlationover four orders of magnitudebetweenand the capacity of grain boundaries, not that of grains, deduced from the analysis of impedance measurements. The DC resistance of the CCTO sample which is essential to make efficient capacitors for technological applications, as well as the loss factor tan(δ), are found to be correlated with the resistance of the grain boundaries rather than that of the grains. The correlation extends over almost seven orders of magnitude. These findings, consistent with the internal barrier layer capacitance (IBLC) model, indicate the leading role of grain boundaries in the origin of the capacitance of CCTO samples.

Topics
  • impedance spectroscopy
  • grain
  • copper
  • Calcium