People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jørgensen, Peter Stanley
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Elucidating Nickel Oxide Reduction in a Ni-YSZ Solid Oxide Cell via in-situ X-ray Nano Holo-Tomographycitations
- 2024Elucidating Nickel Oxide Reduction in a Ni-YSZ Solid Oxide Cell via in-situ X-ray Nano Holo-Tomographycitations
- 2017A Physically-Based Equivalent Circuit Model for the Impedance of a LiFePO 4 /Graphite 26650 Cylindrical Cellcitations
- 2017A Physically-Based Equivalent Circuit Model for the Impedance of a LiFePO4/Graphite 26650 Cylindrical Cellcitations
- 2017Enhanced densification of thin tape cast Ceria-Gadolinium Oxide (CGO) layers by rheological optimization of slurriescitations
- 2016Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodescitations
- 2016Relaxation of stresses during reduction of anode supported SOFCs
- 2015Dictionary Based Segmentation in Volumescitations
- 2015Computation of Effective Steady-State Creep of Porous Ni–YSZ Composites with Reconstructed Microstructurescitations
- 2014Degradation Studies on LiFePO 4 cathode
- 2014On the accuracy of triple phase boundary lengths calculated from tomographic image datacitations
- 2014Degradation Studies on LiFePO4 cathode
- 2014In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopycitations
- 2014Micromechanical Modeling of Solid Oxide Fuel Cell Anode Supports based on Three-dimensional Reconstructions
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Microstructural evolution of nanosized Ce 0.8 Gd 0.2 O 1.9 /Ni infiltrate in a Zr 0.84 Y 0.16 O 1.92 -Sr 0.94 Ti 0.9 Nb 0.1 O 3-δ based SOFC anode under electrochemical evaluation
- 2012Durable and Robust Solid Oxide Fuel Cells
- 2012Microstructural evolution of nanosized Ce0.8Gd0.2O1.9/Ni infiltrate in a Zr0.84Y0.16O1.92-Sr0.94Ti0.9Nb0.1O3-δ based SOFC anode under electrochemical evaluation
- 2010Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells
- 2010Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells
Places of action
Organizations | Location | People |
---|
article
In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopy
Abstract
The densification, delamination and crack growth behavior in a Ce0.9Gd0.1O1.95 (CGO) and (La0.85Sr0.15)0.9MnO3 (LSM) multi-layer ceramic sample was studied using in situ X-ray tomographic microscopy (microtomography) to investigate the critical dynamics of crack propagation and delamination in a multilayered sample. Naturally occurring defects, caused by the sample preparation process, are shown not to be critical in sample degradation. Instead defects are nucleated during the debinding step. Crack growth is significantly faster along the material layers than perpendicular to them, and crack growth and delamination only accelerates when sintering occurs.