People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Homaeigohar, Shahin
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2023Biosynthesis of Zinc Oxide Nanoparticles on l-Carnosine Biofunctionalized Polyacrylonitrile Nanofibers; a Biomimetic Wound Healing Materialcitations
- 2023Correction:A hierarchical Ca/TiO 2 /NH 2 -MIL-125 nanocomposite photocatalyst for solar visible light induced photodegradation of organic dye pollutants in water (RSC Adv. (2020) 10 (29808–29820) DOI:10.1039/D0RA05192F)
- 2023Comparison between the Astaxanthin Release Profile of Mesoporous Bioactive Glass Nanoparticles (MBGNs) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/MBGN Composite Microspherescitations
- 2022Bioactive glass-based fibrous wound dressingscitations
- 2022Green, Sustainable Synthesis of γ-Fe2O3/MWCNT/Ag Nano-Composites Using the Viscum album Leaf Extract and Waste Car Tire for Removal of Sulfamethazine and Bacteria from Wastewater Streamscitations
- 2021Bi/SnO2/TiO2-graphene nanocomposite photocatalyst for solar visible light–induced photodegradation of pentachlorophenolcitations
- 2021Reflective Coloration from Structural Plasmonic to Disordered Polarizoniccitations
- 2021Photocatalytic and Antibacterial Properties of Ag-CuFe2O4@ WO3 Magnetic Nanocompositecitations
- 2021Bi/SnO 2 /TiO 2 -graphene nanocomposite photocatalyst for solar visible light–induced photodegradation of pentachlorophenolcitations
- 2020Size-Tailored Physicochemical Properties of Monodisperse Polystyrene Nanoparticles and the Nanocomposites Made Thereofcitations
- 2020Reawakening of plasmonic nanocomposites with the polarizonic reflective coloration:from metal to moleculescitations
- 2020A hierarchical Ca/TiO2/NH2-MIL-125 nanocomposite photocatalyst for solar visible light induced photodegradation of organic dye pollutants in watercitations
- 2020Reawakening of plasmonic nanocomposites with the polarizonic reflective colorationcitations
- 2019Ups and downs of water photodecolorization by nanocomposite polymer nanofiberscitations
- 2019Switchable Plasmonic Nanocompositescitations
- 2019Solar Aluminum Kitchen Foils with Omnidirectional Vivid Polarizonic Colorscitations
- 2019Amphiphilic oxygenated amorphous carbon-graphite buckypapers with gas sensitivity to polar and non-polar VOCscitations
- 2019An amphiphilic, graphitic buckypaper capturing enzyme biomolecules from watercitations
- 2018A Flexible Oxygenated Carbographite Nanofilamentous Buckypaper as an Amphiphilic Membranecitations
- 2017Broadband anti-reflective coating based on plasmonic nanocompositecitations
- 2016A shape tailored gold-conductive polymer nanocomposite as a transparent electrode with extraordinary insensitivity to volatile organic compounds (VOCs)citations
- 2016Broadband anti-reflective coating based on plasmonic nanocompositecitations
- 2015Nanocomposite nanofiber resembling a nano razor structure
- 2015Nanocomposite nanofiber resembling a nano razor structure
- 2014Nanocomposite electrospun nanofiber membranes for environmental remediationcitations
- 2012Plasmon mediated embedding of nanoparticles in a polymer matrix; nanocomposites patterning, writing and defect healingcitations
- 2012Extraordinarily water permeable sol–gel formed nanocomposite nanofibrous membranescitations
- 2012Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranescitations
- 2010Synthesis of nano β‐TCP and the effects on the mechanical and biological properties of β‐TCP/HDPE/UHMWPE nanocompositescitations
- 2010Synthesis of nano β‐TCP and the effects on the mechanical and biological properties of β‐TCP/HDPE/UHMWPE nanocompositescitations
- 2006The effect of reinforcement volume fraction and particle size on the mechanical properties of β-tricalcium phosphate- high density polyethylene compositescitations
- 2006The effect of reinforcement volume fraction and particle size on the mechanical properties of β-tricalcium phosphate- high density polyethylene compositescitations
Places of action
Organizations | Location | People |
---|
article
The effect of reinforcement volume fraction and particle size on the mechanical properties of β-tricalcium phosphate- high density polyethylene composites
Abstract
The mechanical properties of the tricalcium phosphate–high density polyethylene (β-TCP/HDPE) composite samples have been investigated by looking at the effect of particle size and volume fraction of tricalcium phosphate on the fracture strength, modulus of elasticity and failure energy in the composite samples. A decrease in both the fracture strength and failure energy was observed with an increase in the volume fraction of the tricalcium phosphate. Both properties decreased further with the use of larger β-TCP particles. Increase in the tricalcium phosphate content led to an increase in the modulus of elasticity values in the composite samples. However, a lesser increase in modulus of elasticity was observed when larger β-TCP particles were used in the preparation of the composite samples. SEM analysis of the fractured surfaces showed a transition from ductile to brittle type of failure as the volume fraction of the tricalcium phosphate increased in the samples.<br/><br/>