Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fifield, L. K.

  • Google
  • 1
  • 3
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016European roe deer antlers as an environmental archive for fallout U-236 and Pu-23914citations

Places of action

Chart of shared publication
Wallner, Gabriele
1 / 2 shared
Froehlich, M. B.
1 / 1 shared
Steier, P.
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Wallner, Gabriele
  • Froehlich, M. B.
  • Steier, P.
OrganizationsLocationPeople

article

European roe deer antlers as an environmental archive for fallout U-236 and Pu-239

  • Wallner, Gabriele
  • Fifield, L. K.
  • Froehlich, M. B.
  • Steier, P.
Abstract

Anthropogenic U-236 and Pu-239 were measured in European roe deer antlers hunted between 1955 and 1977 which covers and extends beyond the period of intensive nuclear weapons testing (1954-1962). The antlers were hunting trophies, and hence the hunting area, the year of shooting and the approximate age of each animal is given. Uranium and plutonium are known to deposit in skeletal tissue. Since antler histology is similar to bone, both elements were expected in antlers. Furthermore, roe deer shed their antlers annually, and hence antlers may provide a time-resolved environmental archive for fallout radionuclides. The radiochemical procedure is based on a Pu separation step by anion exchange (Dowex 1 x 8) and a subsequent U purification by extraction chromatography using UTEVA((R)). The samples were measured by Accelerator Mass Spectrometry at the VERA facility (University of Vienna). In addition to the U-236 and Pu-239 concentrations, the Pu-240/Pu-239 isotopic ratios were determined with a mean value of 0.172 +/- 0.023 which is in agreement with the ratio of global fallout (similar to 0.18). Rather high U-236/U-238 ratios of the order of 10(-6) were observed. These measured ratios, where the U-236 arises only from global fallout, have implications for the use of the U-236/U-238 ratio as a fingerprint for nuclear accidents or releases from nuclear facilities. Our investigations have shown the potential to use antlers as a temporally resolved archive for the uptake of actinides from the environment.

Topics
  • impedance spectroscopy
  • extraction
  • spectrometry
  • chromatography
  • Uranium
  • Plutonium
  • Accelerator mass spectrometry