People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pereira, Ryan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Stabilization of carbon through co-addition of water treatment residuals with anaerobic digested sludge in a coarse textured soil
Abstract
Coarse textured soils have low potential to store carbon (C) due to lack of mineral oxides and have low clay content to protect C from biodegradation and leaching. This study evaluated the potential of stabilizing C by adding metal oxyhydroxide-rich water treatment residuals (WTRs) to an aeolian pure sand (<5% clay) topsoil amended with anaerobic digestate (AD) sludge. The AD sludge was applied at 5% (w/w) with aluminum based WTR (Al-WTR) and iron based WTR (Fe-WTR) co-applied at 1:1 and 2:1 WTR:AD (w/w) ratios and incubated at room temperature for 132 days. The cumulative mineralized C was normalized to the total organic C of the treatments. Co-addition with Al-WTR showed to be more effective in stabilizing C through decreased cumulative mineralized C by 48% and 57% in 1Al-WTR:1AD and 2Al-WTR:1AD, respectively, compared to AD sludge sole amendment. Co-application with Al-WTR also decreased permanganate oxidizable C by 37% and dissolved organic C by 51%. Co-application with Fe-WTR did not decrease the concentration of these labile C pools to the same extent, possibly due to the selective use of Fe-WTRs to treat organic-rich raw water. This makes it less effective in stabilizing C in a pure sand relative to Al-WTR due to chemical instability of the Fe-organic complexes. The Al-WTR provides a promising co-amendment to increase C sequestration in pure sands when co-applied with biosolids. The co-amendment approach will not only facilitate C sequestration but also contributes to waste management, aligning to the objectives of a circular economy.