Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ashiq, Ahmed

  • Google
  • 2
  • 6
  • 265

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media123citations
  • 2019Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media142citations

Places of action

Chart of shared publication
Adassooriya, Nadeesh M.
1 / 2 shared
Rajapaksha, Anushka Upamali
2 / 4 shared
Vithanage, Meththika
2 / 5 shared
Ok, Yong Sik
2 / 15 shared
Adassooriya, Nadeesh
1 / 1 shared
Walpita, Janitha
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Adassooriya, Nadeesh M.
  • Rajapaksha, Anushka Upamali
  • Vithanage, Meththika
  • Ok, Yong Sik
  • Adassooriya, Nadeesh
  • Walpita, Janitha
OrganizationsLocationPeople

article

Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media

  • Ashiq, Ahmed
  • Adassooriya, Nadeesh M.
  • Rajapaksha, Anushka Upamali
  • Vithanage, Meththika
  • Ok, Yong Sik
Abstract

<p>This study investigates the adsorption of ciprofloxacin (CPX) onto a municipal solid waste derived biochar (MSW-BC) and a composite material developed by combining the biochar with bentonite clay. A bentonite-MSW slurry was first prepared at 1:5 ratio (w/w), and then pyrolyzed at 450 °C for 30 min. The composite was characterized by scanning electron microscopy (SEM), Powder X-ray diffraction (PXRD) and Fourier transform infrared (FTIR) spectroscopy before and after CPX adsorption. Batch experiments were conducted to assess the effect of pH, reaction time and adsorbate dosage. The SEM images confirmed successful modification of the biochar with bentonite showing plate like structures. The PXRD patterns showed changes in the crystalline lattice of both MSW-BC and the composite before and after CPX adsorption whereas the FTIR spectra indicated merging and widening of specific bands after CPX adsorption. The optimum CPX adsorption was achieved at pH 6, and the maximum adsorption capacity of the composite calculated via isotherm modeling was 190 mg/g, which was about 40% higher than the pristine MSW-BC. The Hill isotherm model along with pseudo-second order and Elovich kinetic models showed the best fit to the adsorption data. The most plausible mechanism for increased adsorption capacity is the increased active sites of the composites for CPX adsorption through induced electrostatic interactions between the functional groups of the composite and CPX molecules. The added reactive surfaces in the composite because of bentonite incorporation, and the intercalation of CPX in the clay interlayers improved the adsorption of CPX by the biochar-bentonite composite compared to the pristine biochar. Thus, MSW-BC-bentonite composites could be considered as a potential material for remediating pharmaceuticals in aqueous media.</p>

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • experiment
  • reactive
  • composite
  • powder X-ray diffraction
  • crystalline lattice