People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alzahrani, Fatimah Mohammed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2023Corrigendum to “Three-dimensional flower-like nanocomposites based on ZnO/NiO as effective electrode materials for supercapacitors” [J. Electroanal. Chem. 930 (2023) 117158]citations
- 2023Three-dimensional flower-like nanocomposites based on ZnO/NiO as effective electrode materials for supercapacitorscitations
Places of action
Organizations | Location | People |
---|
article
Three-dimensional flower-like nanocomposites based on ZnO/NiO as effective electrode materials for supercapacitors
Abstract
The efficient hybrid materials with high specific capacity and long stability are highly desirable electrode materials for supercapacitors. Herein, composites based on ZnO/NiO as active electrode materials was fabricated using soft-templated hydrothermal method. The NiO and ZnO were successfully synthesize into 3D flower structures. The as-synthesized ZnO and NiO were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical measurements of the fabricated ZnO/NiO electrodes were carried out by series of cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). The highest specific capacity of 350 C g<sup>−1</sup> was found at 2 A g<sup>−1</sup> current while the lowest specific capacity of 217 C g<sup>−1</sup> was measured at 20 A g<sup>−1</sup>. Finally, the 3D flower-shaped ZnO/NiO electrode revealed cyclic stability of 72.1 % capacitance retention and 97.1 % Coulombic efficiency at the end of 8000 GCD cycles. The current study revealed augmented supercapacitor properties with exceptional cyclic stability of ZnO/NiO composite-based electrodes. © 2023 Elsevier B.V.