People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Staš, Martin
University of Chemistry and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Amines as Steel Corrosion Inhibitors in Ethanol-Gasoline Blendscitations
- 2024The Use of Amines as Steel Corrosion Inhibitors in Butanol-Gasoline Blendscitations
- 2022Methods for Testing the Steel Corrosion Inhibition in Alcohol−Gasoline Blends Using Diethylenetriaminecitations
- 2022Corrosion Aggressiveness of Ethanol-Gasoline and Butanol-Gasoline Blends on Steel: Application of Electrochemical Impedance Spectroscopycitations
- 2021Electrochemical Corrosion Tests in an Environment of Low-Conductive Ethanol-Gasoline Blends: Part 1 – Testing of Supporting Electrolytescitations
- 2021Electrochemical Study of Mild Steel Resistance in Butanol-Gasoline and Ethanol-Gasoline Blendscitations
- 2021Electrochemical Corrosion Tests in Low-Conductivity Ethanol-Gasoline Blends: Application of Supporting Electrolyte for Contaminated E5 and E10 Fuelscitations
- 2019Cyclic Potentiometric Polarization and Resistance of Mild Steel in an Environment of Alcohols and their Blends with Gasolinecitations
- 2018Study of Corrosion Effects of Oxidized Ethanol-Gasoline Blends on Metallic Materialscitations
- 2017Study of Corrosion of Metallic Materials in Ethanol-Gasoline Blends: Application of Electrochemical Methodscitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical Corrosion Tests in an Environment of Low-Conductive Ethanol-Gasoline Blends: Part 1 – Testing of Supporting Electrolytes
Abstract
Bioethanol is a promising biofuel that can be used in the pure form or in the form of ethanol-gasoline blends (EGBs) as a transportation fuel. The combustion of bioethanol in petrol engines is associated with several problems, with bioethanol corrosion effects on metallic construction engine parts being one of the most serious ones. Electrochemical methods, such as electrochemical impedance spectroscopy, measurement of polarization characteristics (Tafel scan), etc., have been found to be efficient in studying corrosion effects in metal-EGB systems. However, a fuel environment with a low ethanol content (such as E10 and lower) has low conductivity, which can be a limiting factor for electrochemical corrosion studies. Supporting electrolytes can be used to increase the conductivity of such environments. These supporting electrolytes must be inert against the occurring corrosion reactions in order not to negatively affect the obtained corrosion data. In this work, we tested four potential supporting electrolytes (lithium perchlorate, tetrabutylammonium tetrafluoroborate, potassium hexafluorophosphate, and tetrabutylammonium bromide) to be used for the electrochemical corrosion tests on mild steel in the environment of an E85 fuel. In our study, we demonstrated that tetrabutylammonium tetrafluoroborate (TBATFB) can successfully be used for short-term corrosion studies as it exhibited minimum effects on the obtained electrochemical data even at a relatively high concentration of about 500 mg/L. The use of this supporting electrolyte can substantially facilitate electrochemical corrosion studies in less conductive media such as EGBs with a low content of ethanol.