People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mol, Johannes M. C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Biodegradation of Oxide Nanoparticles in Apoferritin Protein Media: A Systematic Electrochemical Approachcitations
- 2020Nanorods grown by copper anodizing in sodium carbonatecitations
- 2020Effect of simulated brazing on the microstructure and corrosion behavior of twin roll cast AA3003citations
- 2019An in situ spectro-electrochemical monitoring of aqueous effects on polymer/metal oxide interfacescitations
- 2018In situ methanol adsorption on aluminum oxide monitored by a combined ORP-EIS and ATR-FTIR Kretschmann setupcitations
- 2018Compositional study of a corrosion protective layer formed by leachable lithium salts in a coating defect on AA2024-T3 aluminium alloyscitations
- 2018Fluoride-Induced Interfacial Adhesion Loss of Nanoporous Anodic Aluminium Oxide Templates in Aerospace Structurescitations
- 2017Interface strength and degradation of adhesively bonded porous aluminum oxidescitations
- 2017Interface strength and degradation of adhesively bonded porous aluminum oxidescitations
- 2017Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applicationscitations
- 2017In Situ Characterization of the Initial Effect of Water on Molecular Interactions at the Interface of Organic/Inorganic Hybrid Systemscitations
- 2017Unravelling the chemical influence of water on the PMMA/aluminum oxide hybrid interface in situcitations
Places of action
Organizations | Location | People |
---|
article
Nanorods grown by copper anodizing in sodium carbonate
Abstract
Self-organized anodization of copper in 0.1 M Na2CO3 electrolyte was studied in order to obtain nanostructured oxide surface on the metal substrate. Linear sweep voltammetry (LSV) revealed that the most suitable voltage range for anodic film formation is from 3 to 31 V. In this range (except between 3 and 7 V), the oxide is formed as nanorods, with the diameter of the anodically grown nanostructures increasing with the applied voltage. The smallest diameter of the nanorods was found to be 28 ± 9 nm (15 V), while the greatest diameter was 109 ± 15 nm (30 V). X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Raman spectroscopy pointed out that the nanorods consist of crystalline CuO (tenorite) and Cu2O (cuprite), and amorphous Cu(OH)2. Moreover, the greater the anodizing voltage, the greater the CuO content versus Cu2O. The formed nanostructured materials may find applications in photocatalysis and catalytic electrochemical reduction of carbon dioxide into light hydrocarbons. ; Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; (OLD) MSE-6 ; Micro and Nano Engineering