People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mol, Johannes M. C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Biodegradation of Oxide Nanoparticles in Apoferritin Protein Media: A Systematic Electrochemical Approachcitations
- 2020Nanorods grown by copper anodizing in sodium carbonatecitations
- 2020Effect of simulated brazing on the microstructure and corrosion behavior of twin roll cast AA3003citations
- 2019An in situ spectro-electrochemical monitoring of aqueous effects on polymer/metal oxide interfacescitations
- 2018In situ methanol adsorption on aluminum oxide monitored by a combined ORP-EIS and ATR-FTIR Kretschmann setupcitations
- 2018Compositional study of a corrosion protective layer formed by leachable lithium salts in a coating defect on AA2024-T3 aluminium alloyscitations
- 2018Fluoride-Induced Interfacial Adhesion Loss of Nanoporous Anodic Aluminium Oxide Templates in Aerospace Structurescitations
- 2017Interface strength and degradation of adhesively bonded porous aluminum oxidescitations
- 2017Interface strength and degradation of adhesively bonded porous aluminum oxidescitations
- 2017Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applicationscitations
- 2017In Situ Characterization of the Initial Effect of Water on Molecular Interactions at the Interface of Organic/Inorganic Hybrid Systemscitations
- 2017Unravelling the chemical influence of water on the PMMA/aluminum oxide hybrid interface in situcitations
Places of action
Organizations | Location | People |
---|
article
An in situ spectro-electrochemical monitoring of aqueous effects on polymer/metal oxide interfaces
Abstract
A spectro-electrochemical setup of Fourier transform infrared spectroscopy (FTIR) in the Kretschmann geometry and odd random phase multisine electrochemical impedance spectroscopy (ORP EIS) is applied to in situ monitor the effect of an aqueous electrolyte on the polymer/metal oxide interface. The interfacial interactions of an ultrathin polyacrylic acid (PAA) film on an aluminum oxide surface are identified as carboxylate ionic bonds and changes induced by the effect of water diffusion at the interface are monitored in situ. Initially after electrolyte exposure, an increase in ionic bonding is observed. However, eventually the interfacial interactions are replaced by water molecules, leading to macroscopic delamination. By comparing a variation of oxide types, the stability of the interfacial bonds is linked to the amount of free hydroxyl groups on the aluminum oxide surface. An electric equivalent circuit is proposed to model the ORP EIS response of the PAA/aluminum oxide system and the fitted resistance values could be interpreted in a physically meaningful way. Finally, a poly(methyl methacrylate) (PMMA) deposition on aluminum oxide is investigated to explore the effect of a variation in functional groups present at the polymer/metal oxide interface. It is shown that PMMA forms a more stable interface than PAA on native aluminum oxide. This work demonstrates that IR spectroscopy in the Kretschmann geometry and ORP EIS are suited techniques to in situ probe interfacial bonds at polymer/metal oxide systems exposed to aqueous conditions. Moreover, a variation of the surface properties of the metal oxide as well as the functional groups of the polymer alter the stability of their mutual interface when exposed to aqueous conditions. ; Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the ...