People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bartlett, Philip N.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2024Electrodeposition of bismuth, tellurium and bismuth telluride through sub-10 nm mesoporous silica thin filmscitations
- 2024Electrodeposition of 2D layered tungsten diselenide thin films using a single source precursorcitations
- 2023Temperature effects on the electrodeposition of semiconductors from a weakly coordinating solventcitations
- 2022Mesoporous silica films as hard templates for electrodeposition of nanostructured goldcitations
- 2022Vertical and Lateral Electrodeposition of 2D Material Heterostructures
- 2022Diffusion in weakly coordinating solventscitations
- 2022Selection and characterisation of weakly coordinating solvents for semiconductor electrodepositioncitations
- 20222D material based optoelectronics by electroplating
- 20222D material based optoelectronics by electroplating
- 2021Electrodeposited WS 2 monolayers on patterned graphenecitations
- 2021Tungsten disulfide thin films via electrodeposition from a single source precursorcitations
- 2021Lateral growth of MoS2 2D material semiconductors over an insulator via electrodepositioncitations
- 2021Lateral growth of MoS 2 2D material semiconductors over an insulator via electrodepositioncitations
- 2020Large-area electrodeposition of few-layer MoS2 on graphene for 2D material heterostructurescitations
- 2020Thermoelectric properties of bismuth telluride thin films electrodeposited from a non-aqueous solutioncitations
- 2020Chloroantimonate electrochemistry in dichloromethanecitations
- 2020Large-area electrodeposition of few-layer MoS 2 on graphene for 2D material heterostructurescitations
- 2020Electrodeposition of MoS2 from dichloromethanecitations
- 2019Electrodeposition of bismuth telluride from a weakly coordinating, non-aqueous solutioncitations
- 2018Towards a 3D GeSbTe phase change memory with integrated selector by non-aqueous electrodepositioncitations
- 2018Electrodeposition of a functional solid state memory material – germanium antimony telluride from a non-aqueous plating bathcitations
- 2017Active gas replenishment and sensing of the wetting state in a submerged superhydrophobic surfacecitations
- 2017Plastic reactor suitable for high pressure and supercritical fluid electrochemistrycitations
- 2017Tin, bismuth, and tin–bismuth alloy electrodeposition from chlorometalate salts in deep eutectic solventscitations
- 2016Haloplumbate salts as reagents for the non-aqueous electrodeposition of leadcitations
- 2016A versatile precursor system for supercritical fluid electrodeposition of main-group materialscitations
- 2015Non-aqueous electrodeposition of functional semiconducting metal chalcogenides: Ge2Sb2Te5phase change memorycitations
- 2015A Versatile Precursor System for Supercritical Fluid Electrodeposition of Main-Group Materialscitations
- 2015Phase-change memory properties of electrodeposited Ge-Sb-Te thin filmcitations
- 2013Non-aqueous electrodeposition of metals and metalloids from halometallate saltscitations
- 2013A his-tagged Melanocarpus albomyces laccase and its electrochemistry upon immobilisation on NTA-modified electrodes and in conducting polymer filmscitations
- 2013The deposition of mesoporous Ni/Co alloy using cetyltrimethylammonium bromide as the surfactant in the lyotropic liquid crystalline phase bathcitations
- 2010Position-dependent coupling between a channel waveguide and a distorted microsphere resonatorcitations
- 2010Synthesis and structure of [{C7F15CO2}2AgAu(PPh3)]2 and its use in electrodeposition of gold–silver alloyscitations
- 2009Relating SERS intensity to specific plasmon modes on sphere segment void surfacescitations
- 2009Electrodeposition of metals from supercritical fluidscitations
- 2009Electrodeposition of highly ordered macroporous iridium oxide through self-assembled colloidal templatescitations
- 2007Geometrical multilayers: coercivity in magnetic 3-D nanostructurescitations
- 2007SERS at structured palladium and platinum surfacescitations
- 2006Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assemblycitations
- 2005Shape-induced anisotropy in antidot arrays from self-assembled templatescitations
Places of action
Organizations | Location | People |
---|
article
Electrodeposition of bismuth telluride from a weakly coordinating, non-aqueous solution
Abstract
<p>We report the electrodeposition of bismuth telluride thin films on to titanium nitride (TiN) electrodes from a weakly coordinating solvent, dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>), using the halometallates, [N<sup>n</sup>Bu<sub>4</sub>][BiCl<sub>4</sub>] and [N<sup>n</sup>Bu<sub>4</sub>]<sub>2</sub>[TeCl<sub>6</sub>] with 0.1 M [N<sup>n</sup>Bu<sub>4</sub>]Cl as the supporting electrolyte. The elemental composition of the electrodeposited films was found to be independent of the deposition potential between −0.6 and −2.0 V vs. Ag/AgCl but to be dependent on ratio of the concentrations of the Bi and Te precursors in the solution, with the amount of bismuth in the films increasing when the concentration of [N<sup>n</sup>Bu<sub>4</sub>][BiCl<sub>4</sub>] in solution was increased. All the electrodeposited films were found to be homogenous in composition across the electrode surface and to be reproducible in composition for replicate experiments. As the deposition potential was taken less negative, the morphology of the deposits changed from uniform films to films with a compact micro/nano particle structure as seen by scanning electron microscopy (SEM). Using this system, the electrodeposition of crystalline Bi<sub>2</sub>Te<sub>3</sub>and Bi<sub>4</sub>Te<sub>3</sub>was confirmed by energy dispersive spectroscopy (EDX) and grazing incidence X-ray diffraction.</p>