People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alegret, Salvador
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2011Magneto immunoassays for plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticlescitations
- 2009Electrochemical immunosensor for the diagnosis of celiac diseasecitations
- 2009Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safetycitations
- 2009Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensorscitations
- 2007Electrochemical magneto immunosensing of antibiotic residues in milkcitations
- 2007Bioaffinity platforms based on carbon-polymer biocomposites for electrochemical biosensingcitations
- 2007Electrochemical biosensing of pesticide residues based on affinity biocomposite platformscitations
- 2007In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogenscitations
- 2006Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition devicescitations
- 2006Impedimetric genosensors for the detection of DNA hybridizationcitations
- 2006Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodescitations
- 2006Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodescitations
- 2006Electrochemical magnetoimmunosensing strategy for the detection of pesticides residuescitations
- 2006Extractant assisted synthesis of polymer stabilized platinum and palladium metal nanoparticles for sensor applicationscitations
- 2006Electrochemical biosensing based on universal affinity biocomposite platformscitations
- 2005Integration of a glucose biosensor based on an epoxy-graphite- TTF·TCNQ-GOD biocomposite into a FIA systemcitations
- 2005Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracercitations
- 2005Electrochemical genosensing based on rigid carbon composites. A reviewcitations
- 2005Glucose biosensor based on carbon nanotube epoxy compositescitations
- 2005Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursorcitations
- 2004Renewable Protein A modified graphite-epoxy composite for electrochemical immunosensingcitations
- 2004Rigid carbon composites: A new transducing material for label-free electrochemical genosensingcitations
- 2003Graphite-epoxy platforms for electrochemical genosensingcitations
- 2003Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrodecitations
- 2003Graphite-epoxy composites as a new transducing material for electrochemical genosensingcitations
Places of action
Organizations | Location | People |
---|
article
Rigid carbon composites: A new transducing material for label-free electrochemical genosensing
Abstract
A rigid carbon-polymer composite material as a transducer for the electrochemical determination of label-free DNA based on differential pulse voltammetry (DPV) is reported. Graphite-epoxy composites (GEC) have an uneven surface allowing DNA, oligonucleotides and free DNA bases to be adsorbed using a simple and fast wet-adsorption procedure. In contrast with other transducers commonly used for electrochemical genosensing, the oxidation potentials are much lower when GEC is used. Free guanine base is oxidized at +0.35 V while adenine oxidation occurs at +0.63 V (vs Ag|AgCl). Cytosine and inosine free bases show no peaks within the experimental potential range. The oxidation of DNA guanine moieties occurs at a potential of +0.55 V while DNA adenine bases are oxidized at +0.85 V. A novel label-free hybridization genosensor using GEC as an electrochemical transducer for the specific detection of a sequence related with Salmonella spp. is also reported. This approach relies on the wet adsorption of the 23-mer inosine-substituted probe. The extent of hybridization onto the GEC surface between the probe and the target has been determined by using the oxidation signal of guanine coming from the target in connection with DPV. DNA hybridization has been determined in a target concentration of 10 μg/ml in 15 min of hybridization time. The hybridization event has also been detected in co-existing salmon testes DNA (stDNA) as interference. The features of this device are discussed and compared with state-of-the-art of label free DNA detection methods. © 2003 Elsevier B.V. All rights reserved.