People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sheppard, Thomas L.
Leipzig University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Using CoCu2Ga/SiO2 to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenationcitations
- 2024Using CoCu 2 Ga/SiO 2 to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenationcitations
- 2024Using CoCu$_2$Ga/SiO$_2$ to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenation
- 2022Evolution of Hierarchically Porous Nickel Alumina Catalysts Studied by X‐Ray Ptychographycitations
- 2020Reduction and carburization of iron oxides for Fischer–Tropsch synthesiscitations
- 2020Optimizing Ni-Fe-Ga alloys into Ni$_{2}$FeGa for the hydrogenation of CO$_{2}$ into methanolcitations
- 2020Optimizing Ni-Fe-Ga alloys into Ni 2 FeGa for the hydrogenation of CO 2 into methanolcitations
- 2019Supported Intermetallic PdZn Nanoparticles as Bifunctional Catalysts for the Direct Synthesis of Dimethyl Ether from CO-Rich Synthesis Gascitations
- 2019Mapping the Pore Architecture of Structured Catalyst Monoliths from Nanometer to Centimeter Scale with Electron and X-ray Tomographiescitations
Places of action
Organizations | Location | People |
---|
article
Reduction and carburization of iron oxides for Fischer–Tropsch synthesis
Abstract
The activation of iron oxide Fischer–Tropsch synthesis (FTS) catalysts was investigated during pretreatment: reduction in hydrogen followed by carburization in either CO or syngas mixture, or simultaneously reduction and carburization in syngas. A combination of different complementary in situ techniques was used to gain insight into the behavior of Fe-based FTS catalysts during activation. In situ XRD was used to identify the crystalline structures present during both reduction in hydrogen and carburization. An increase in reduction rate was established when increasing the temperature. A complete reduction was demonstrated in the ETEM and a grain size dependency was proven, i.e. bigger grains need higher temperature in order to reduce. XPS and XAS both indicate the formation of a small amount of carbonaceous species at the surface of the bulk metallic iron during carburization.