People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Damsgaard, Christian Danvad
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Using CoCu2Ga/SiO2 to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenationcitations
- 2024Using CoCu 2 Ga/SiO 2 to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenationcitations
- 2024Using CoCu$_2$Ga/SiO$_2$ to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenation
- 2024Stable mass-selected AuTiOx nanoparticles for CO oxidationcitations
- 2024Stable mass-selected AuTiO x nanoparticles for CO oxidationcitations
- 2023Ni 5-x Ga 3+x Catalyst for Selective CO 2 Hydrogenation to MeOH :Investigating the Activity at Ambient Pressure and Low Temperature with Microreactors
- 2023Ni5-xGa3+x Catalyst for Selective CO2 Hydrogenation to MeOH
- 2022Reversible Atomization and Nano-Clustering of Pt as a Strategy for Designing Ultra-Low-Metal-Loading Catalystscitations
- 2021Characterization of oxide-supported Cu by infrared measurements on adsorbed COcitations
- 2020Reduction and carburization of iron oxides for Fischer–Tropsch synthesiscitations
- 2019Evolution of intermetallic GaPd2/SiO2 catalyst and optimization for methanol synthesis at ambient pressurecitations
- 2018Scalable Synthesis of Carbon-Supported Platinum–Lanthanide and −Rare-Earth Alloys for Oxygen Reductioncitations
- 2016Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychographycitations
- 2015Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanolcitations
- 2015Intermetallic GaPd 2 Nanoparticles on SiO 2 for Low-Pressure CO 2 Hydrogenation to Methanol:Catalytic Performance and In Situ Characterizationcitations
- 2014In situ ETEM synthesis of NiGa alloy nanoparticles from nitrate salt solutioncitations
- 2014In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratiocitations
- 2014Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanolcitations
- 2014Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanolcitations
- 2014Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation
- 2013Optical coupling in the ETEM
- 2012Origin of low temperature deactivation of Ni5Ga3 nanoparticles as catalyst for methanol synthesis
- 2011In situ environmental transmission electron microscope investigation of NiGa nanoparticle synthesis
- 2009Interfacial, electrical, and spin-injection properties of epitaxial Co2MnGa grown on GaAs(100)citations
- 2008Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloyscitations
- 2006Spin injection from epitaxial Heusler alloy thin films into InGaAs/GaAs quantum wells
- 2005Fe-contacts on InAs(100) and InP(100) characterised by conversion electron Mössbauer spectroscopycitations
- 2005Spin injection between epitaxial Co2.4Mn1.6Ga and an InGaAs quantum wellcitations
Places of action
Organizations | Location | People |
---|
article
Reduction and carburization of iron oxides for Fischer–Tropsch synthesis
Abstract
The activation of iron oxide Fischer–Tropsch synthesis (FTS) catalysts was investigated during pretreatment: reduction in hydrogen followed by carburization in either CO or syngas mixture, or simultaneously reduction and carburization in syngas. A combination of different complementary in situ techniques was used to gain insight into the behavior of Fe-based FTS catalysts during activation. In situ XRD was used to identify the crystalline structures present during both reduction in hydrogen and carburization. An increase in reduction rate was established when increasing the temperature. A complete reduction was demonstrated in the ETEM and a grain size dependency was proven, i.e. bigger grains need higher temperature in order to reduce. XPS and XAS both indicate the formation of a small amount of carbonaceous species at the surface of the bulk metallic iron during carburization.