People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Camilleri, Josette
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Proposing new standards for testing solubility of pulp preservation materialscitations
- 2024Chemical, antibacterial and cytotoxic properties of four different endodontic sealer leachates over timecitations
- 2024Leaching and cytotoxicity of bismuth oxide in ProRoot MTAcitations
- 2024Characterization and Assessment of Physical Properties of 3 Single Syringe Hydraulic Cement-based Sealerscitations
- 2023Editorial
- 2022Surface characteristics and bacterial adhesion of endodontic cements.citations
- 2022Surface characteristics and bacterial adhesion of endodontic cements ; ENEngelskEnglishSurface characteristics and bacterial adhesion of endodontic cementscitations
- 2021Effect of different manipulations on the physical, chemical and microstructural characteristics of Biodentinecitations
- 2021PRILE 2021 guidelines for reporting laboratory studies in endodontologycitations
- 2020Antimicrobial and ultrastructural properties of root canal filling materials exposed to bacterial challengecitations
- 2020Characterization of heat resistant hydraulic sealer for warm vertical obturationcitations
- 2020Classification of hydraulic cements used in dentistrycitations
- 2019Bioactivity potential of Portland cement in regenerative endodontic procedurescitations
- 2019Investigation of the effect of the water to powder ratio on hydraulic cement propertiescitations
- 2018Surface Microstructural Changes and Release of Ions from Dental Metal Alloy Removable Prostheses in Patients Suffering from Acid Refluxcitations
- 2018The effect of mixing method on tricalcium silicate-based cementcitations
- 2018Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environmentscitations
- 2017Antimicrobial activity of ProRoot MTA in contact with bloodcitations
- 2017Bonding over Dentin Replacement Materialscitations
- 2017Will Bioceramics be the Future Root Canal Filling Materials?citations
- 2016Assessment of the interaction of Portland cement-based materials with blood and tissue fluids using an animal modelcitations
- 2015Effect of sterilization techniques prior to antimicrobial testing on physical properties of dental restorative materialscitations
- 2014Color stability of white mineral trioxide aggregate in contact with hypochlorite solutioncitations
Places of action
Organizations | Location | People |
---|
article
Antimicrobial and ultrastructural properties of root canal filling materials exposed to bacterial challenge
Abstract
Introduction<br/>Chemo-mechanical preparation of the root canal leaves behind viable bacteria which can lead to treatment failure. Materials used inside the root canal should possess antimicrobial properties and also resist disintegration in the presence of biofilm.<br/><br/>Methods<br/>Gutta-percha, three root canal sealers (Pulp Canal Sealer, AH Plus and BioRoot RCS) and materials used to make posts (a metal and a resin) were evaluated. Their antimicrobial activity against Enterococcus faecalis in direct contact was assessed by scanning electron microscopy and live-dead staining using confocal microscopy over a period of eight weeks. The materials’ structural integrity was assessed by scanning electron microscopy.<br/><br/>Results<br/>The antimicrobial activity of the materials varied. The metal alloy posts as well as BioRoot RCS sealer did not allow any biofilm accumulation; but gutta-percha, Pulp Canal Sealer and resin from fibre-reinforced posts encouraged thick biofilm accumulation. Microstructural changes were observed in AH Plus (washout) and BioRoot (crystal deposition) in contact with biofilm. The Pulp Canal and BioRoot RCS sealers exhibited a modified ion leaching pattern in contact with microbially loaded media.<br/><br/>Conclusions<br/>The microbial challenge affected the material microstructure in some of the materials tested and allowed biofilm accumulation. Although clinical success depends on a number of factors, materials that are structurally sound and exhibit antimicrobial properties are preferable for endodontic therapy and tooth restoration involving entry in the root canal.