People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Banerjee, Avijit
King's College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Release Kinetics of Monomers from Dental Composites Containing Fluoride-Doped Calcium Phosphatescitations
- 2021Commercially available ion-releasing dental materials and cavitated carious lesionscitations
- 2021Conventional Glass-ionomer Cements: A Guide for Practitionerscitations
- 2020An in vitro assessment of the physical properties of manually- mixed and encapsulated glass-ionomer cementscitations
- 2020Chemo-Mechanical Characterisation of Carious Dentine Using Raman Microscopy and Knoop Microhardness.
- 2020Chemo-mechanical characterization of carious dentine using Raman microscopy and Knoop microhardnesscitations
- 2019In vitro compressive strength and edge stability testing of directly repaired glass-ionomer cementscitations
- 2018In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan
- 2018Remineralisation of enamel white spot lesions pre-treated with chitosan in the presence of salivary pelliclecitations
- 2018In vitro remineralization of caries-affected dentin after selective carious tissue removalcitations
- 2016The effect of air-abrasion on the susceptibility of sound enamel to acid challengecitations
- 2015Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralizationcitations
- 2014Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powderscitations
- 2013In Vitro Effect of Air-abrasion Operating Parameters on Dynamic Cutting Characteristics of Alumina and Bio-active Glass Powderscitations
- 2012Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cementcitations
- 2011An in vitro evaluation of selective demineralised enamel removal using bio-active glass air abrasioncitations
- 2011Minimally invasive caries removal using bio-active glass air-abrasioncitations
- 2010Pulp response to resin-modified glass ionomer and calcium hydroxide cements in deep cavities: A quantitative systematic reviewcitations
- 2009An in vitro evaluation of the efficiency of an air-abrasion system using helium as a propellantcitations
- 2008An in vitro investigation of the effect and retention of bioactive glass air-abrasive on sound and carious dentinecitations
- 2006Microhardness as a predictor of sound and carious dentine removal using alumina air abrasioncitations
Places of action
Organizations | Location | People |
---|
article
The effect of air-abrasion on the susceptibility of sound enamel to acid challenge
Abstract
ObjectiveTo evaluate the effect of air-abrasion using three abrasive powders, on the susceptibility of sound enamel to an acid challenge. Methods40 human enamel samples were flattened, polished and assigned to 4 experimental groups (n = 10); a: alumina air-abrasion, b: sodium bicarbonate air-abrasion, c: bioactive glass (BAG) air-abrasion and d: no surface treatment (control). White light confocal profilometry was used to measure the step height enamel loss of the abraded area within each sample at three stages; after sample preparation (baseline), after air-abrasion and finally after exposing the samples to pH-cycling for 10 days. Data was analysed statistically using one-way ANOVA with Tukey’s HSD post-hoc tests (p < 0.05). Unique prismatic structures generated by abrasion and subsequent pH cycling were imaged using multiphoton excitation microscopy, exploiting strong autofluorescence properties of the enamel without labelling. Z-stacks of treated and equivalent control surfaces were used to generate non-destructively 3-dimensional surface profiles similar to those produced by scanning electron microscopy. ResultsThere was no significant difference in the step height enamel loss after initial surface air-abrasion compared to the negative control group. However, a significant increase in the step height enamel loss was observed in the alumina air-abraded samples after pH-cycling compared to the negative control (p < 0.05). Sodium bicarbonate as well as BAG air-abrasion exhibited similar enamel surface loss to that detected in the negative control group (p > 0.05). Surface profile examination revealed a deposition effect across sodium bicarbonate and BAG-abraded groups. ConclusionThis study demonstrates the importance of powder selection when using air abrasion technology in clinical dentistry. Pre-treating the enamel surface with alumina air-abrasion significantly increased its susceptibility to acid challenge. Therefore, when using alumina air-abrasion clinically, clinicians must be aware that abrading sound enamel excessively renders that surface more susceptible to the effects of acid erosion. BAG and sodium bicarbonate powders were less invasive when compared to the alumina powder, supporting their use for controlled surface stain removal from enamel where indicated clinically.