People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Watson, Timothy F.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2018In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan
- 2018Remineralisation of enamel white spot lesions pre-treated with chitosan in the presence of salivary pelliclecitations
- 2015Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralizationcitations
- 2014Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powderscitations
- 2013Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfacescitations
- 2012Adhesion of Indirect MOD Resin Composite Inlays Luted With Self-adhesive and Self-etching Resin Cementscitations
- 2012Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cementcitations
- 2011An in vitro evaluation of selective demineralised enamel removal using bio-active glass air abrasioncitations
- 2011Minimally invasive caries removal using bio-active glass air-abrasioncitations
- 2011Durability of Resin Cement Bond to Aluminium Oxide and Zirconia Ceramics after Air Abrasion and Laser Treatmentcitations
- 2010Flexural strength of glass fibre-reinforced posts bonded to dual-cure composite resin cementscitations
- 2009Y-TZP Ceramics: Key Concepts for Clinical Applicationcitations
- 2009Bond Strength of Resin Cements to a Zirconia Ceramic with Different Surface Treatmentscitations
- 2009An in vitro evaluation of the efficiency of an air-abrasion system using helium as a propellantcitations
- 2009Evaluation of the Surface Roughness and Morphologic Features of Y-TZP Ceramics after Different Surface Treatmentscitations
- 2008An in vitro investigation of the effect and retention of bioactive glass air-abrasive on sound and carious dentinecitations
- 2006Microhardness as a predictor of sound and carious dentine removal using alumina air abrasioncitations
Places of action
Organizations | Location | People |
---|
article
Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powders
Abstract
Objective<br/>To evaluate the potential of bio-active glass (BAG) powder and BAG containing polyacrylic acid (PAA-BAG) to remineralise enamel white spot lesions (WSL).<br/><br/>Methods<br/>32 human enamel samples with artificial WSLs were assigned to 4 experimental groups (n = 8); (a) BAG slurry, (b) PAA-BAG slurry, (c) “standardised” remineralisation solution (positive control) and (d) de-ionised water (negative control). Mechanical properties of enamel were assessed using surface and cross-section Knoop microhardness. Micro-Raman spectroscopy in StreamLine™ scan mode was used to scan lesion cross-sections. The intensity of the Raman phosphate peak at 959 cm−1 was fitted and measured producing depth profiles analysed using a double-step fitting function. A further 20 samples (n = 5) were used to obtain 3D images of surfaces using non-contact white light profilometry permitting measurement of lesion step height in relation to the sound enamel reference level, and to scan the lesion surface using scanning electron microscopy (SEM). Data were analysed statistically using one-way ANOVA with Tukey's HSD post-hoc tests.<br/><br/>Results<br/>BAG, PAA-BAG and the remineralisation solution exhibited statistically significantly higher surface and cross-section Knoop microhardness compared to the negative control. Micro-Raman spectroscopy detected significantly higher phosphate content within the treated groups compared to the negative control group. Lesions’ depth was not significantly reduced. SEM images revealed mineral depositions, with different sizes and shapes, within BAG, PAA-BAG and the positive control groups.<br/><br/>Conclusion<br/>BAG and PAA-BAG surface treatments enhance enamel WSL remineralisation, assessed by the resultant improved mechanical properties, higher phosphate content and morphological changes within the artificial lesions.