Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salgado, Vinícius Esteves

  • Google
  • 1
  • 3
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013The influence of nanoscale inorganic content over optical and surface properties of model composites50citations

Places of action

Chart of shared publication
Cavalcante, Larissa Maria
1 / 6 shared
Silikas, Nikolaos
1 / 93 shared
Schneider, Luis Felipe J.
1 / 5 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Cavalcante, Larissa Maria
  • Silikas, Nikolaos
  • Schneider, Luis Felipe J.
OrganizationsLocationPeople

article

The influence of nanoscale inorganic content over optical and surface properties of model composites

  • Cavalcante, Larissa Maria
  • Silikas, Nikolaos
  • Salgado, Vinícius Esteves
  • Schneider, Luis Felipe J.
Abstract

Objectives To investigate the influence of nanoscale inorganic content over optical and surface properties of model composites before and after ageing. Methods Three model composites were formulated with silica fillers in nanoscale of 7 nm (G1), 12 nm (G2) and 16 nm (G3), at 45.5% by weight in a matrix of BisGMA/TEGDMA 1:1. Color coordinates (CIE L*a*b* parameters), color difference (ΔE*), translucency parameter (TP), surface gloss (SG) and surface roughness (SR) were measured before and after ageing procedures of immersion in water and toothbrush abrasion. Surface hardness (SH) were evaluated before and after immersion in absolute ethanol. Results were submitted to two-way ANOVA followed by Tukey's post hoc test performed at a pre-set alpha of 0.05. Results Regarding CIE L*a*b* parameters, a darkening, a redness and a blueness effect, were respectively detected after water storage for all groups. Smaller filler sizes (G1) had the highest CIE b* values, whereas medium (G2) (p <0.05) had higher values than larger fillers (G3) (p <0.05) either before or after water immersion. Toothbrush abrasion did not produce any significant effect on CIE a* and CIE b* values, however increased CIE L*, decreased TP in addition to produce rougher and matte surfaces in all groups. Filler size did not influence ΔE* (p > 0.05), although a tendency towards lower values in smaller filler materials was observed. Ageing after immersion in absolute ethanol decreased SH for all model composites. Conclusions Filler sizes and ageing procedures influenced the optical and surface properties of the nanostructured composites evaluated in this study. Clinical significance Filler size influenced optical and surface properties of resin composites. Materials containing smaller filler size offered improved optical stability and surface properties that can lead to longer maintenance of the restoration's appearance in the oral environment. © 2013 Elsevier Ltd.

Topics
  • surface
  • composite
  • hardness
  • aging
  • resin