People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fawzy, Amr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Effect of inositol hexaphosphate acid versus polyacrylic acid on dentin properties and adhesion of a self-adhesive restorative material to dentincitations
- 2024The Synergistic Effect of High Intensity Focused Ultrasound on In-vitro Remineralization of Tooth Enamel by Calcium Phosphate Ion Clusterscitations
- 2024Flowable resin-based composites modified with chlorhexidine-loaded mesoporous silica nanoparticles induce superior antibiofilm properties
- 2022Cytotoxicity and antimicrobial efficiency of ZrO2 nanoparticles reinforced 3D printed resinscitations
- 2022Development of 3D printed dental resin nanocomposite with graphene nanoplatelets enhanced mechanical properties and induced drug-free antimicrobial activity.citations
- 2021Development of 3D printed resin reinforced with modified ZrO2 nanoparticles for long-term provisional dental restorationscitations
- 2021Formulation of pH-sensitive chlorhexidine-loaded/mesoporous silica nanoparticles modified experimental dentin adhesivecitations
- 2020The Effect of Cross-linking Efficiency of Drug-Loaded Novel Freeze Gelated Chitosan Templates for Periodontal Tissue Regenerationcitations
- 2020Effect of acid etching on dentin bond strength of ultra-mild self-etch adhesivescitations
- 2020Properties of a modified quaternary ammonium silane formulation as a potential root canal irrigant in endodonticscitations
- 2020In vitro bonding performance of modern self-adhesive resin cements and conventional resin-modified glass ionomer cements to prosthetic substratescitations
- 2019Resin-based dental composites for tooth filling
- 2019Macrophage response and surface analysis of dental cementum after treatment with high intensity focused ultrasoundcitations
- 2019An in vitro study of a novel quaternary ammonium silane endodontic irrigantcitations
- 2019Co-blend application mode of bulk fill composite resincitations
- 2018In vitro assessment of ribose modified two-step etch-and-rinse dentine adhesivecitations
- 2017Proanthocyanidins-Loaded Nanoparticles Enhance Dentin Degradation Resistancecitations
- 2017Potentiating the antibacterial effect of silver nanospheres by surface-capping with chlorhexidine gluconatecitations
- 2015Characterization of antibacterial and adhesion properties of chitosan-modified glass ionomer cementcitations
- 2012Riboflavin as a dentin crosslinking agentcitations
- 2009Effect acidic and alkaline/heat treatments on the bond strength of different luting cements to commercially pure titaniumcitations
- 2009Tensile bond strength of immediately repaired anterior microfine hybrid restorative composite using nontrimmed hourglass specimens
- 2008Effect of surface treatments on the tensile bond strength of repaired water-aged anterior restorative micro-fine hybrid resin compositecitations
Places of action
Organizations | Location | People |
---|
article
Effect of surface treatments on the tensile bond strength of repaired water-aged anterior restorative micro-fine hybrid resin composite
Abstract
<p>OBJECTIVES: The purpose of this study was to characterize changes in surface topography associated with different surface treatments and their effect on tensile bond strength (TBS) of repaired water-aged anterior restorative micro-fine hybrid resin composite.</p><p>METHODS: The TBS of repaired resin-based composite slabs either non-treated or exposed to different mechanical and/or chemical surface treatment procedures were measured. The cohesive tensile strength of non-repaired intact slabs was used as a control group. The topographical effects of acid etching, grinding, and grinding followed by acid etching were characterized by AFM and SEM.</p><p>RESULTS: All repaired groups showed significantly lower TBS than the control group. The TBS of repaired groups was ranged from 15% to 59% of the cohesive tensile strength of the control group (18.8+/-4.5MPa). The surface roughness of the non-treated aged specimens was significantly higher than other treated specimens. Specimens treated by acid etching showed significant increase in surface area compared to the non-treated and treated specimens.</p><p>CONCLUSIONS: Aging process resulted in the formation of degradable surface layer which adversely affects the repair bond strength. The use of silane primer prior to the application of the adhesive after mechanical grinding, with or without the use of 37% phosphoric acid etching; improves the repair bond strength.</p>