Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paolinelis, G.

  • Google
  • 2
  • 2
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2008An in vitro investigation of the effect and retention of bioactive glass air-abrasive on sound and carious dentine32citations
  • 2006Microhardness as a predictor of sound and carious dentine removal using alumina air abrasion24citations

Places of action

Chart of shared publication
Banerjee, Avijit
2 / 21 shared
Watson, Timothy F.
2 / 17 shared
Chart of publication period
2008
2006

Co-Authors (by relevance)

  • Banerjee, Avijit
  • Watson, Timothy F.
OrganizationsLocationPeople

article

An in vitro investigation of the effect and retention of bioactive glass air-abrasive on sound and carious dentine

  • Banerjee, Avijit
  • Paolinelis, G.
  • Watson, Timothy F.
Abstract

Objectives: To examine the removal rate of sound and carious dentine using bioactive glass air-abrasion and investigate abrasive particle retention of alumina and bioactive glass on abraded dentine. Methods: Crushed bioactive glass was investigated as an alternative air-abrasive to alumina at air pressures of 138, 413 and 689 kPa in the presence or absence of water. The correlation coefficient between the amount of dentine removed using bioactive glass air-abrasion and the Knoop Hardness Number of dentine was calculated. The comparative retention of bioactive glass (BG) and alumina (AL) abrasive on human dentine blocks were calculated as atomic ratios acquired by spectral analysis between air-abrasive tracers (Si for bioactive glass, and Al for alumina) and Ca. A total of 60 dentine blocks were abraded using Al or BG in 12 groups of 5 using three different pressures in using wet and dry air-abrasion. Results: The amount of dentine removed using bioactive glass air-abrasion had a Somers' D coefficient of 0.65 for the Knoop hardness. Wet air-abrasion caused a significant (p 0.05) decrease in the amount of abrasive retained on the surface for Al air-abrasion at 138 and 413 kPa and BG air-abrasion at 413 and 689 kPa. Conclusion: There was a negative correlation between propellant pressure and abrasive retained. Bioglass removed healthy dentine at a higher rate than carious dentine - the difference however, being less than with equivalent alumina air-abrasion, thus making it a potentially more selective instrument for clinical caries excavation. (C) 2007 Elsevier Ltd. All rights reserved

Topics
  • surface
  • glass
  • glass
  • laser emission spectroscopy
  • hardness