Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rothe, Joerg

  • Google
  • 4
  • 30
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Investigation of the solid/liquid phase transitions in the U–Pu–O system11citations
  • 2019Melting behaviour of uranium-americium mixed oxides under different atmospheres16citations
  • 2015Comparative U, Np and Pu M edge high energy resolution X-ray absorption spectroscopy (HR-XANES) investigations of model and genuine active waste glasscitations
  • 2005XAFS investigation of the formation and structure of Zr(IV) colloidscitations

Places of action

Chart of shared publication
Manara, D.
2 / 11 shared
Fossati, P. C. M.
1 / 1 shared
Fouquet-Métivier, P.
1 / 1 shared
Dardenne, Kathy
4 / 12 shared
Guéneau, C.
2 / 16 shared
Martin, P. M.
2 / 5 shared
Vitova, Tonya
2 / 7 shared
Prieur, D.
1 / 4 shared
Epifano, E.
1 / 3 shared
Wiss, T.
1 / 6 shared
Konings, R. J. M.
1 / 4 shared
Dieste, O.
1 / 2 shared
Koldeisz, V.
1 / 4 shared
Pruessmann, Tim
1 / 5 shared
Boshoven, J.
1 / 2 shared
Bahl, S.
1 / 8 shared
Geckeis, H.
1 / 11 shared
Gonzalez-Robles, E.
1 / 3 shared
Martel, L.
1 / 3 shared
Kvashnina, K. O.
1 / 3 shared
Bohnert, E.
1 / 3 shared
Pidchenko, I.
1 / 5 shared
Kienzler, B.
1 / 6 shared
Roth, G.
1 / 12 shared
Schild, Dieter
1 / 12 shared
Neck, V.
1 / 1 shared
Walther, C.
1 / 2 shared
Fanghänel, T.
1 / 2 shared
Denecke, M. A.
1 / 8 shared
Cho, H. R.
1 / 1 shared
Chart of publication period
2023
2019
2015
2005

Co-Authors (by relevance)

  • Manara, D.
  • Fossati, P. C. M.
  • Fouquet-Métivier, P.
  • Dardenne, Kathy
  • Guéneau, C.
  • Martin, P. M.
  • Vitova, Tonya
  • Prieur, D.
  • Epifano, E.
  • Wiss, T.
  • Konings, R. J. M.
  • Dieste, O.
  • Koldeisz, V.
  • Pruessmann, Tim
  • Boshoven, J.
  • Bahl, S.
  • Geckeis, H.
  • Gonzalez-Robles, E.
  • Martel, L.
  • Kvashnina, K. O.
  • Bohnert, E.
  • Pidchenko, I.
  • Kienzler, B.
  • Roth, G.
  • Schild, Dieter
  • Neck, V.
  • Walther, C.
  • Fanghänel, T.
  • Denecke, M. A.
  • Cho, H. R.
OrganizationsLocationPeople

article

Melting behaviour of uranium-americium mixed oxides under different atmospheres

  • Manara, D.
  • Vitova, Tonya
  • Prieur, D.
  • Dardenne, Kathy
  • Epifano, E.
  • Rothe, Joerg
  • Guéneau, C.
  • Wiss, T.
  • Konings, R. J. M.
  • Martin, P. M.
  • Dieste, O.
Abstract

In the context of a comprehensive campaign for the characterisation of transmutation fuels for next generation nuclear reactors, the melting behaviour of mixed uranium-americium dioxides has been experimentally studied for the first time by laser heating, for Am concentrations up to 70 mol. % under different types of atmospheres. Extensive post-melting material characterisations were then performed by X-ray absorption spectroscopy and electron microscopy. The melting temperatures observed for the various compositions follow a markedly different trend depending on the experimental atmosphere. Uranium-rich samples melt at temperatures significantly lower (around 2700 K) when they are laser-heated in a strongly oxidizing atmosphere compressed air at (0.300 ± 0.005) MPa, compared to the melting points (beyond 3000 K) registered for the same compositions in an inert environment (pressurised Ar). This behaviour has been interpreted on the basis of the strong oxidation of such samples in air, leading to lower-melting temperatures. Thus, the melting temperature trend observed in air is characterized, in the purely pseudo-binary dioxide plane, by an apparent maximum melting temperature around 2850 K for 0.3 < x(AmO2) < 0.5. The melting points measured under inert atmosphere uniformly decrease with increasing americium content, displaying an approximately ideal solution behaviour if a melting point around 2386 K is assumed for pure AmO2. In reality, it will be shown that the (U, Am)-oxide system can only be rigorously described in the ternary U-Am-O phase diagram, rather than the UO2-AmO2 pseudo-binary, due to the aforementioned over-oxidation effect in air. Indeed, general departures from the oxygen stoichiometry (Oxygen/Metal ratios ≠ 2.0) have been highlighted by the X-ray Absorption Spectroscopy (XAS). Finally, to help interpret the experimental results, thermodynamic computations based on the CALPHAD method will be presented.

Topics
  • impedance spectroscopy
  • Oxygen
  • melt
  • electron microscopy
  • phase diagram
  • additive manufacturing
  • x-ray absorption spectroscopy
  • melting temperature
  • Uranium
  • CALPHAD
  • Americium