People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Freitas, Vls
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2020Benzocaine: A comprehensive thermochemical studycitations
- 2019Thermodynamic properties of epsilon-caprolactam and epsilon-caprothiolactamcitations
- 2018Thermochemistry of R-SH group in gaseous phase: Experimental and theoretical studies of three sulfur imidazole derivativescitations
- 2014Structural, energetic and reactivity properties of phenoxazine and phenothiazinecitations
Places of action
Organizations | Location | People |
---|
article
Structural, energetic and reactivity properties of phenoxazine and phenothiazine
Abstract
A combined experimental and computational study was developed with the aim of evaluate and understand the structural, energetic and reactivity properties of phenoxazine and phenothiazine. Experimentally, differential scanning calorimetry, static and rotating bomb combustion calorimetries, Knudsen effusion and Calvet microcalorimetry were employed to determine, respectively, the standard (p degrees = 0.1 MPa) molar enthalpies of fusion, Delta H-1(cr)m degrees, at the temperature of fusion, the standard molar enthalpies of formation, in the crystalline phase, Delta H-f(m)degrees(cr), at T = 298.15 K, the temperature-vapor pressures dependences, and the standard molar enthalpies of sublimation, Delta H-g(cr)m degrees, at T = 298.15 K. These data allowed the derivation the experimental standard molar enthalpies of formation, in the gaseous phase, Delta H-f(m)degrees(g), of phenoxazine, (100.8 +/- 4.3) kJ.mol (1), and of phenothiazine, (273.5 +/- 4.7) kJ.mol (1). Computationally, the composite G3(MP2)//B3LYP approach was used to optimize the structures of these two compounds and to estimate their Delta H-f(m)degrees(g) values, which are found to be in very good agreement with the experimental ones. Calculations were also performed for additional analyses of their natural bond orbitals (NBO) and to obtain other gas-phase thermodynamic properties, namely N-H bond dissociation enthalpies, gas-phase acidities and basicities and proton affinities.